6th International Symposium on Visual Computing (ISVC’10)
Nov 29 - Dec 1, 2010, Las Vegas, Nevada, USA
Contents

SYMPOSIUM OVERVIEW ...2
MONDAY, NOVEMBER 29th ...3
TUESDAY, DECEMBER 30th ...5
WEDNESDAY, DECEMBER 1st ..7
POSTER SESSION ...9
Keynote Speakers...13
Steering Committee/Area Chairs...19
International Program Committee ..20
Special Tracks ..27
SPONSORS ..30
Final Program

6th International Symposium on Visual Computing (ISVC’10)

Nov 29th - Dec 1st, 2010, Las Vegas, Nevada, USA

Symposium Overview

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday 29th</th>
<th>Tuesday 30th</th>
<th>Wednesday 1st</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00 am – 08:30 am</td>
<td>Breakfast (Ballroom 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30 am – 9:30 am</td>
<td>Keynote (Ballroom 4-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:40 am – 10:40 am</td>
<td>Parallel Sessions (Ballroom 2, 3, 4-5, Platinum Room)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:40 am – 11:10 am</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10 am – 12:10 am</td>
<td>Parallel Sessions (Ballroom 2, 3, 4-5, Platinum Room)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:10 pm – 1:30 pm</td>
<td>Lunch Break (on your own)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30 pm – 2:30 pm</td>
<td>Keynote (Ballroom 4-5)</td>
<td>*Poster Session * (Ballroom 4-5)</td>
<td>Keynote (Ballroom 4-5)</td>
</tr>
<tr>
<td>2:40 pm – 3:40 pm</td>
<td>Parallel Sessions (Ballroom 2, 3, 4-5, Platinum Room)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:40 pm – 4:10 pm</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:10 pm – 6:00 pm</td>
<td>Parallel Sessions (Ballroom 2, 3, 4-5, Platinum Room)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Registration Desk hours:
- Sunday Nov 28th: 5:30pm - 9:30pm
- Monday, Nov 29th – Wednesday, Dec 1st: 7:30am – 5:30pm

Banquet Dinner:
- Tuesday, Nov 30th: 7:00pm – 9:30pm (East Ballrooms 5,6,7)

The poster session runs from 1:30pm to 3:30pm.
Monday, November 29th

7:00-8:30
Breakfast (Ballroom 1)

8:30-9:30
Keynote: Marc Pollefeys, ETH Zurich, Switzerland (Ballroom 4-5)

Parallel Sessions

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chair</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:40-12:10</td>
<td>ST: Computational Bioimaging I
Chair: Valentin Brimkov (Ballrooms 4-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40</td>
<td>Ontology-driven Image Analysis for Histopathological Images
Ahlem Othmani, Carole Meziat, and Nicolas Lomenie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Attribute-filtering and knowledge extraction for vessel segmentation
Benoît Caldairou, Nicolas Passat, Benoît Naegle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>A Human Inspired Local Ratio-Based Algorithm for Edge Detection in Fluorescent Cell Images
Joe Chalfoun, Alden A. Dima, Adele P. Peskin, John T. Elliott, and James J. Filliben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>A non-rigid multimodal image registration method based on particle filter and optical flow
Edgar Arce-Santana, Daniel U. Campos-Delgado, and Alfonso Alba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>Stitching of Microscopic Images for Quantifying Neuronal Growth and Spine Plasticity
SooMin Song, Jeany Son, Myoung-Hee Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td>Feature-Preserving 3D Thumbnail Creation with Voxel-based Two-Phase Decomposition
Pei-Ying Chiang, May-Chen Kuo, and C.-C. Jay Kuo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40-12:10</td>
<td>ST: Behavior Detection and Modeling
Chair: Mircea Nicolescu (Ballroom 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40</td>
<td>Learning Scene Entries and Exits using Coherent Motion Regions
Matthew Nedrich and James W. Davis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Adding Facial Actions into 3D Model Search to Analyse Behaviour in an Unconstrained Environment
Angela Caunce, Chris Taylor, Tim Cootes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>Aggregating Low-Level Features for Human Action Recognition
Kyle Parrigan and Richard Souvenir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>ImagEIncorporating Social Entropy for Crowd Behavior Detection Using SVM
Saira Saleem Pathan, Ayoub Al-Hamadi, and Bernd Michaelis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>Introducing a Statistical Behavior Model into Camera-Based Fall Detection
Andreas Zweng, Sebastian Zambanini and Martin Kampel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td>Study of Image Color Stealing in Log-Polar Space
Hiroaki Kotera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:10-1:30</td>
<td>Lunch (on your own)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parallel Sessions

Feature Extraction and Matching (Chair: Ronald Chug (Ballrooms 4-5))

2:40

How to Overcome Perceptual Aliasing in ASIFT?
Nicolas Noury, Frederic Sur, Marie-Odile Berger

3:00

Speeding up HOG and LBP features for Pedestrian Detection by Multiresolution Techniques
Philip Geismann and Alois Knoll

3:20

Utilizing Invariant Descriptors for Finger Spelling American Sign Language using SVM
Omer Rashid, Ayoub Al-Hamadi, Bernd Michaelis

Visualization I (Chairs: Rene Rosenbaum (Ballroom 2))

2:40

Fractal Map: Fractal-based 2D Expansion Method for Multi-scale High-dimensional Data Visualization
Takanori Fujiwara, Ryo Matsushita, Masaki Iwamaru, Manabu Tange, Satoshi Someya and Koji Okamoto

3:00

Visual Network Analysis of Dynamic Metabolic Pathways
Markus Rohrschneider, Alexander Ulrich, Andreas Kerren, Peter F. Stadler, and Gerik Scheuermann

3:20

Interpolating 3D Diffusion Tensors in 2D Planar Domain by Locating Degenerate Lines
Chongke Bi, Shigeo Takahashi, and Issei Fujishiro

Motion and Tracking (Chair: Alireza Tavakkoli (Ballroom 3))

2:40

Attention-based Target Localization using Multiple Instance Learning
Karthik Sankaranarayanan and James W. Davis

3:00

Introducing Fuzzy Spatial Constraints in a Ranked Partitioned Sampling for Multi-Object Tracking
Nicolas Widynski Severine Dubuisson and Isabelle Bloch

3:20

Object tracking and segmentation in a closed loop
Konstantinos E. Papoutsakis and Antonis A. Argyros

ST: Unconstrained Biometrics: Advances and Trends (Chair: Alexei Sourin (Platinum Room))

2:40

Acquisition Scenario Analysis for Face Recognition at a Distance
P. Tomea, J. Fierrez, M.C. Fairhurst and J. Ortega-Garcia

3:00

Enhancing Iris Matching Using Levenshtein Distance with Alignment Constraints
Andreas Uhl and Peter Wild

3:20

A Mobile-oriented Hand Segmentation algorithm based on Fuzzy Multiscale Aggregation
Ángel García-Casarrubios Muñoz, Carmen Sánchez Ávila, Alberto de Santos Sierra, Javier Guerra Casanova

Coffee Break

4:10

Bivariate Feature Localization for SIFT Assuming a Gaussian Feature Shape
Kai Cordes, Oliver Muller, Bodo Rosenhahn, and Jorn Ostermann

4:30

Linear Dimensionality Reduction through Eigenvector Selection for Object Recognition
F. Dornaika and A. Assoum

4:50

Symmetry Enhanced Adaboost
Florian Baumann, Katharina Ernst, Arne Ehlers, Bodo Rosenhahn

5:10

Object Category Classification Using Occluding Contours
Jin Sun, Christopher Thorpe, Nianhua Xie, Jingyi Yu, and Haibin Ling

Coffee Break

4:10

Optical flow estimation with prior models obtained from phase correlation
Alfonso Alba, Edgar Arce-Santana, and Mariano Rivera

4:30

Conservative Motion Estimation from Multi-Image Sequences
Wei Chen

4:50

Gradient-based Modified Census Transform for Optical Flow
Philipp Puxbaum and Kristian Ambrosch

5:10

Depth Assisted Occlusion Handling in Video Object Tracking
Yingdong Ma, Qian Chen

4:10

Analysis of Time Domain Information for Footstep Recognition

4:30

Shaped Wavelets for Curvilinear Structures for Ear Biometrics
Mina I. S. Ibrahim, Mark S. Nixon, and Sasan Mahmoodi

4:50

Face Recognition using Sparse Representations and Manifold Learning
Grigorios Tsagkatakis, Andreas Savakis

5:10

Face Recognition in Videos Using Adaptive Graph Appearance Models
Gayathri Mahalingam and Chandra Kambhamettu
Tuesday, November 30th

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00-8:30</td>
<td>Breakfast (Ballroom 1)</td>
</tr>
<tr>
<td>8:30-9:30</td>
<td>Keynote: John Stasko, Georgia Institute of technology, USA (Ballrooms 4-5)</td>
</tr>
<tr>
<td>9:40-12:10</td>
<td>ST: Computational Bioimaging II
Chairs: Christos Constantiou (Ballrooms 4-5)</td>
</tr>
<tr>
<td>9:40</td>
<td>A Spatial-temporal Frequency Approach to Estimate Cardiac Motion
Marco Gutierrez, Marina Rebeiro, Wietse Meyering, and Raul Feijoo</td>
</tr>
<tr>
<td>10:00</td>
<td>Mitosis extraction in breast-cancer histopathological whole slide images
Vincent Roullier, Olivier Lezoray, Vinh-Thong Ta and Abderrahim Elmoataz</td>
</tr>
<tr>
<td>10:20</td>
<td>Predicting Segmentation Accuracy for Biological Cell Images
Adele P. Peskin, Alden A. Dima, Joe Chalfoun, and John T. Elliott</td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:10</td>
<td>Multiscale Analysis of Volumetric Motion Field using General Order Prior
Koji Kashu, Atsushi Iymiya, and Tomoya Sakai</td>
</tr>
<tr>
<td>11:30</td>
<td>A multi-relational learning approach for knowledge extraction in in vitro fertilization domain
Teresa M. A. Basile, Floriana Esposito, Laura Caponetti</td>
</tr>
<tr>
<td>9:40-12:10</td>
<td>ST: 3D Mapping, Modeling and Surface Reconstruction
Chair: Ara Nefian (Ballroom 3)</td>
</tr>
<tr>
<td>9:40</td>
<td>Markov random field-based clustering for the integration of multi-view range images
Ran Song, Yonghuai Liu, Ralph R. Martin, and Paul L. Rosin</td>
</tr>
<tr>
<td>10:00</td>
<td>Robust Wide Baseline Scene Alignment based on 3D Viewpoint Normalization
Michael Ying Yanga, Yanpeng Caob, Wolfgang Forstnera, John McDonald</td>
</tr>
<tr>
<td>10:20</td>
<td>Modified region growing for stereo of slant and textureless surfaces
Rohit MV, Gowri Somanath, Chandra Kamthamettu, Cathleen Geiger, and David Finnegan</td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:10</td>
<td>Synthetic Shape Reconstruction Combined with the FT-Based Method in Photometric Stereo
Osamu Ikeda</td>
</tr>
<tr>
<td>11:30</td>
<td>Lunar Terrain and Albedo Reconstruction of the Apollo 15 Zone
Ara V. Nefian, Taemin Kim, Zachary Moratto, Ross Beyer and Terry Fong</td>
</tr>
<tr>
<td>12:10-1:30</td>
<td>Lunch (on your own)</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>1:30-3:30</td>
<td>Poster Session (Ballrooms 4-5 & Hallway)</td>
</tr>
<tr>
<td></td>
<td>Parallel Sessions</td>
</tr>
<tr>
<td>3:30-6:00</td>
<td>Calibration, Pose Estimation and Reconstruction Chair: Xenophon Zabulis (Ballrooms 4-5) Segmentation Chair: Andreas Savakis (Ballroom 2)</td>
</tr>
<tr>
<td>3:30</td>
<td>Multiple Camera Self-Calibration and 3D Reconstruction Using Pedestrians Michael Hodlmoser and Martin Kampel Region and Edge-adaptive Sampling and Boundary Completion for Segmentation Scott E. Dillard, Lakshman Prasad, and Jacopo Grazzini</td>
</tr>
<tr>
<td>3:50</td>
<td>Robust Radial Distortion from a Single Image Faisal Bukhari and Matthew N. Dailey Universal Seed Skin Segmentation Rehanullah Khan, Allan Hanbury and Julian Stottinger</td>
</tr>
<tr>
<td>4:00-4:40</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>4:40</td>
<td>Projective reconstruction of general 3D planar curves from uncalibrated cameras X.B. Zhang, A. W. K. Tang, and Y. S. Hung A sharp concentration-based adaptive segmentation algorithm Christophe Fiorio and Andre Mas</td>
</tr>
<tr>
<td>5:00</td>
<td>A Novel Photometric Method for Real-Time 3D Reconstruction of Fingerprint Wuyuan Xie, Zhan Song, Xiaoting Zhang Segmentation for Hyperspectral Images with Priors Jian Ye, Todd Wittman, Xavier Bresson, Stanley Osher</td>
</tr>
<tr>
<td>5:20</td>
<td>3D Camera Pose Estimation using Line Correspondences and 1D Homographies Irene Reisner-Kollmann, Andreas Reichinger, and Werner Purgathofer The Curve Filter Transform - a Robust Method for Curve Enhancement Kristian Sandberg</td>
</tr>
<tr>
<td>3:30-6:00</td>
<td>Stereo Chair: Taemin Kim (Ballroom 3) Virtual Reality II Chair: Christoph Borst (Platinum Room)</td>
</tr>
<tr>
<td>4:00-4:40</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>4:40</td>
<td>Simultaneous Vanishing Point Detection and Camera Calibration from Single Images Bo Li, Kun Peng, Xianghua Ying, Hongbin Zha Prismfields: A Framework for Interactive Modeling of Three Dimensional Caves Matt Boggus and Roger Crawfis</td>
</tr>
<tr>
<td>5:00</td>
<td>Inferring Planar Patch Equations from Sparse View Stereo Images Rimon Elias Efficient Marker Matching Using Pair-wise Constraints in Physical Therapy Gregory Johnson, Nianhua Xie, Jill Slaboda, Y. Justin Shi, Emily Keshner, and Haibin Ling</td>
</tr>
<tr>
<td>5:40</td>
<td>A Region-Based Randomized Voting Scheme for Stereo Matching Guillaume Gales, Alain Crouzil and Sylvie Chambon</td>
</tr>
<tr>
<td>7:00-9:30</td>
<td>Banquet Dinner (East Ballrooms 5,6,7) Keynote: Steve Seitz, University of Washington, USA</td>
</tr>
</tbody>
</table>

Wednesday, December 1st

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chair/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00-8:30</td>
<td>Breakfast (Ballroom 1)</td>
<td></td>
</tr>
<tr>
<td>8:30-9:30</td>
<td>Keynote: Ioannis Kakadiaris, University of Houston, USA (Ballrooms 4-5)</td>
<td></td>
</tr>
<tr>
<td>9:40-12:10</td>
<td>Parallel Sessions</td>
<td></td>
</tr>
<tr>
<td>9:40</td>
<td>Registration Chair: Christophe Fiorio (Ballrooms 4-5)</td>
<td>Medical Imaging Chair: Fabien Scalzo (Ballroom 2)</td>
</tr>
<tr>
<td>9:40</td>
<td>A Novel Consistency Regularizer for Meshless Non-rigid Image Registration</td>
<td>Tissue Fate Prediction in Acute Ischemic Stroke using Cuboid Models</td>
</tr>
<tr>
<td></td>
<td>Wei Liu and Eraldo Ribeiro</td>
<td>Fabien Scalzo, Qing Hao, Jeffrey R. Alger, Xiao Hu, David S. Liebeskind</td>
</tr>
<tr>
<td>10:00</td>
<td>Robust Rigid Shape Registration Method Using a Level Set Formulation</td>
<td>3D vector row guided segmentation of airway wall in MSCT</td>
</tr>
<tr>
<td>10:20</td>
<td>A Meshless Method for Variational Nonrigid 2-D Shape Registration</td>
<td>Graph-Based Segmentation of Lymph Nodes in CT Data</td>
</tr>
<tr>
<td></td>
<td>Wei Liu and Eraldo Ribeiro</td>
<td>Yao Wang and Reinhard Beichel</td>
</tr>
<tr>
<td>9:40-12:10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>A New Simple Method to Stitch Images with Lens Distortion</td>
<td>Electron Microscopy Image Segmentation with Graph Cuts Utilizing Estimated Symmetric Three-Dimensional Shape Prior</td>
</tr>
<tr>
<td></td>
<td>Myung-Ho Ju and Hang-Bong Kang</td>
<td>Huei-Fang Yang and Yoonsuck Choe</td>
</tr>
<tr>
<td>11:30</td>
<td>Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline</td>
<td>A Workflow Based Process Visual Analyzer (ProVisZer) for Teaching and Learning</td>
</tr>
<tr>
<td></td>
<td>Taemin Kim, Zachary Moratto and Ara V. Nefian</td>
<td>Nathaniel Rossol, Irene Cheng and Mrinal Mandal</td>
</tr>
<tr>
<td>9:40-12:10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>Low Cost VR Meets Low Cost Multi-Touch</td>
<td>Multi-Institutional Collaboration in Delivery of Team-Project-Based Computer Graphics Studio Courses</td>
</tr>
<tr>
<td></td>
<td>Dane Coffey, Fedor Korsakov, and Daniel F. Keefe</td>
<td>Tim McLaughlin, B. Adan Pena, Todd A. Fechter, Anton Markus Pasing, Judith Reitz, and Joseph A. Vidal</td>
</tr>
<tr>
<td>10:00</td>
<td>IQ-Station: A Low Cost Portable Immersive Environment</td>
<td>A Workflow Based Process Visual Analyzer (ProVisZer) for Teaching and Learning</td>
</tr>
<tr>
<td></td>
<td>William R. Sherman, Patrick O'Leary, Eric T. Whiting, Shane Grover, and Eric A. Wernert</td>
<td>Nathaniel Rossol, Irene Cheng and Mrinal Mandal</td>
</tr>
<tr>
<td>10:20</td>
<td>A Fiducial-Based Tangible User Interface for White Matter Tractography</td>
<td>Teaching geometric modeling algorithms and data structures through laser scanner acquisition pipeline</td>
</tr>
<tr>
<td></td>
<td>Steven R. Gomez, Radu Jianu, and David H. Laidlaw</td>
<td>Gueorguieva S., Synave R. and Couture-Veschambre, Ch.</td>
</tr>
<tr>
<td>12:10-1:30</td>
<td>Lunch (on your own)</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Applications</td>
<td>Visualization II</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>2:40-5:30</td>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chair: Yoshinori Kuno (Ballrooms 4-5)</td>
<td>Visualization II</td>
</tr>
<tr>
<td></td>
<td>Object Material Classification by Surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflection Analysis with a Time-of-Flight Range</td>
<td>Distance Field Illumination: a Rendering Method to</td>
</tr>
<tr>
<td></td>
<td>Sensor Md. Abdul Mannan, Dipankar Das,</td>
<td>Aid in Navigation of Virtual Environments</td>
</tr>
<tr>
<td></td>
<td>Yoshinori Kobayashi, and Yoshinori Kuno</td>
<td>Matt Boggus and Roger Crawfis</td>
</tr>
<tr>
<td>3:00</td>
<td>Retrieving Images of Similar Geometrical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration</td>
<td>Indirect Shader Domain Rendering</td>
</tr>
<tr>
<td></td>
<td>Xiaolong Zhang and Baoxin Li</td>
<td>Daqing Xue and Roger Crawfis</td>
</tr>
<tr>
<td>3:20</td>
<td>An Analysis-by-Synthesis Approach to Rope</td>
<td>Visual Exploration of Stream Pattern Changes Using</td>
</tr>
<tr>
<td></td>
<td>Condition Monitoring</td>
<td>a Data-driven Framework</td>
</tr>
<tr>
<td></td>
<td>Esther-Sabrina Wacker and Joachim Denzler</td>
<td>Zaixian Xie, Matthew O. Ward, and Elke A. Rundensteiner</td>
</tr>
<tr>
<td>3:40-4:10</td>
<td>Video Analysis and Event Recognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chair: Vijayan Asari (Ballroom 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Activity Recognition: A Scheme Using</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple Cues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samy Sadeky, Ayoub Al-Hamady, Bernd Michaelisy,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Usama Sayed</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>A platform for monitoring aspects of human</td>
<td></td>
</tr>
<tr>
<td></td>
<td>presence in real-time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X. Zabulis, T. Sarmis, K. Tzevanidis, P.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Koutlemenis, D. Grammenos, and A. A. Argyros</td>
<td></td>
</tr>
<tr>
<td>3:20</td>
<td>Egocentric Visual Event Classification with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location-Based Priors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sudeep Sundaram and Walterio W. Mayol-Cuevas</td>
<td></td>
</tr>
<tr>
<td>2:40-5:30</td>
<td>Video Analysis and Event Recognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chair: Vijayan Asari (Ballroom 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Session</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Platinum Room)</td>
<td></td>
</tr>
<tr>
<td>3:40-4:10</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>4:10</td>
<td>Fast Parallel Model Estimation on the Cell</td>
<td>RibbonView: Interactive Context-Preserving Cutaways</td>
</tr>
<tr>
<td></td>
<td>Broadband Engine</td>
<td>of Anatomical Surface Meshes</td>
</tr>
<tr>
<td></td>
<td>Ali Khalili, Amir Fijany, Fouzhan Hosseini,</td>
<td>T. McInerney and P. Crawford</td>
</tr>
<tr>
<td></td>
<td>Saeed Safari, Jean-Guy Fontaine</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>Organizing and Browsing Image Search Results</td>
<td>Interactive Visualisation of Time-based Vital Signs</td>
</tr>
<tr>
<td></td>
<td>based on Conceptual and Visual Similarities</td>
<td>Rhys Tague, Anthony Maeder and Quang Vinh Nguyen</td>
</tr>
<tr>
<td></td>
<td>Grant Strong, Enamul Hoque, Mingjun Gong,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orland Hoebner</td>
<td></td>
</tr>
<tr>
<td>4:50</td>
<td>Evaluation of a Difference of Gaussians based</td>
<td>Using R-trees for Interactive Visualization of</td>
</tr>
<tr>
<td></td>
<td>Image Difference Metric in Relation to Perceived</td>
<td>Large Multidimensional Datasets</td>
</tr>
<tr>
<td></td>
<td>Compression Artifacts</td>
<td>Alfredo Gimenez, Rene Rosenbaum, Mario Hlawitschka,</td>
</tr>
<tr>
<td></td>
<td>Gabriele Simone, Valentina Caracciolo,</td>
<td>and Bernd Hamann</td>
</tr>
<tr>
<td></td>
<td>Marius Pedersen and Faouzi Alaya Cheikh</td>
<td></td>
</tr>
<tr>
<td>5:10</td>
<td>Combining Automated and Interactive Visual Analysis of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomechanical Motion Data</td>
<td>Scott Spurlock, Remco Chang, Xiaoyu Wang, George</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arceneaux IV, Daniel F. Keefe, and Richard Souvenir</td>
</tr>
</tbody>
</table>

Keynote: **Aditi Majumder**, **University of California, Irvine, USA** (Ballrooms 4-5)
Poster Session (Ballrooms 4-5 and Hallway)

Tuesday, November 30th (1:30pm-3:30pm)

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient Algorithms for Image and High Dimensional Data Processing using Eikonal Equation on Graphs</td>
<td>Xavier Desquesnes, Abderrahim Elmoataz, Olivier Lezoray and Vinh-Thong Ta</td>
</tr>
<tr>
<td>3D DCT Based Compression Method for Integral Images</td>
<td>Ju-Il Jeon and Hyun-Soo Kang</td>
</tr>
<tr>
<td>Plant Texture Classification Using Gabor Co-Occurrences</td>
<td>James S. Cope, Paolo Remagnino, Sarah Barman, and Paul Wilkin</td>
</tr>
<tr>
<td>A Compressive Sensing Algorithm for Many-Core Architectures</td>
<td>A. Borghi, J. Darbon, S. Peyronnet, T.F. Chan, and S. Osher</td>
</tr>
<tr>
<td>An Incremental PCA-HOG Descriptor for Robust Visual Hand Tracking</td>
<td>Hanxuan Yang, Zhan Song, Runen Chen</td>
</tr>
<tr>
<td>Probabilistic Learning of Visual Object Composition from Attended Segments</td>
<td>Masayasu Atsumi</td>
</tr>
<tr>
<td>Propagating Uncertainty in Petri Nets for Activity Recognition</td>
<td>Gal Lavee, Michael Rudzsky, and Ehud Rivlin</td>
</tr>
<tr>
<td>Mixture of Gaussians Exploiting Histograms of Oriented Gradients for Background Subtraction</td>
<td>Tomas Fabian</td>
</tr>
<tr>
<td>Human Pose Recognition using Chamfer Distance in Reduced Background Edge for Human-Robot Interaction</td>
<td>Anjin Park and Keechul Jung</td>
</tr>
<tr>
<td>Modeling Clinical Tumors to Create Reference Data for Tumor Volume Measurement</td>
<td>Adele P. Peskin and Alden A. Dima</td>
</tr>
<tr>
<td>Spectral Image Decolorization</td>
<td>Ye Zhao and Zakiya Tamimi</td>
</tr>
<tr>
<td>Lunar Image Classification for Terrain Detection</td>
<td>Heng-Tze Cheng, Feng-Tso Sun, Senaka Buthpitiya, Ying Zhang, Ara V. Nefian</td>
</tr>
<tr>
<td>Surface Modeling of the Corpus Callosum from MRI Scans</td>
<td>Ahmed Farag, Shireen Elhabian, Mostafa Abdelrahman, James Graham, Aly Farag</td>
</tr>
<tr>
<td>Track detection for autonomous trains</td>
<td>Michael Gschwandtner, Wolfgang Pree, and Andreas Uhl</td>
</tr>
<tr>
<td>Local Descriptors for Document Layout Analysis</td>
<td>Angelika Garz, Markus Diem and Robert Sablatnig</td>
</tr>
<tr>
<td>CT Image Segmentation using Structural Analysis</td>
<td>Hiroyuki HISHIDA, Takashi MICHIKAWA, Yutaka OHTAKE, Hiromasa SUZUKI, and Satoshi OOTA</td>
</tr>
<tr>
<td>Phase Space for Face Pose Estimation</td>
<td>Jacob Foytik, Vijayan K. Asari, R. Cortland Tompkins, and Menatoallah Youssef</td>
</tr>
<tr>
<td>Contour Based Shape Retrieval</td>
<td>Levente Kovacs</td>
</tr>
<tr>
<td>Illumination Normalization for Robust Face Recognition Using DiscreteWavelet Transform</td>
<td>Amnart Petpon and Sanun Srisuk</td>
</tr>
<tr>
<td>Feature-Based Lung Nodule Classification</td>
<td>Amal Farag, Asem Ali, James Graham, Shireen Elhabian, Aly Farag and Robert Falk</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Multiple-Object Tracking in Cluttered and Crowded Public Spaces</td>
<td>Rhys Martin and Ognjen Arandjelovic</td>
</tr>
<tr>
<td>Compliant interframe coding for Motion-JPEG2000</td>
<td>René Rosenbaum and Heidrun Schumann</td>
</tr>
<tr>
<td>EVP-Based Multiple-View Triangulation</td>
<td>G. Chesi and Y.S. Hung</td>
</tr>
<tr>
<td>An Improved Shape Matching Algorithm for Deformable Objects Using a Global Image Feature</td>
<td>Jibum Kim and Suzanne M. Shontz</td>
</tr>
<tr>
<td>Multi-Scale Topo-Morphometric Opening of Arteries and Veins:</td>
<td>An Evaluative Study via Pulmonary CT Imaging</td>
</tr>
<tr>
<td>Video event detection as matching of spatiotemporal projection</td>
<td>Dong-Jun Park and David Eichmann</td>
</tr>
<tr>
<td>PixelLaser: Computing range from monocular texture</td>
<td>N. Lesperance, M. Leece, S. Matsumoto, M. Korbel, K. Lei, and Z. Dodds</td>
</tr>
<tr>
<td>A Spatio-Spectral Algorithm for Robust and Scalable Object Tracking in Videos</td>
<td>Alireza Tavakkoli, Mircea Nicolescu, George Bebis</td>
</tr>
<tr>
<td>Driving Fatigue Detection Using Active Shape Models</td>
<td>Hernan Garcia, Augusto Salazar, Damian Alvarez and Alvaro Orozco</td>
</tr>
<tr>
<td>Outlier Removal in Stereo Reconstruction of Orbital Images</td>
<td>Marvin Smith and Ara Nefian</td>
</tr>
<tr>
<td>Random Sampling Nonlinear Optimization for Camera Self-Calibration</td>
<td>Houman Rastgar, Eric Dubois and Liang Zhang</td>
</tr>
<tr>
<td>Facial Fraud Discrimination using Detection and Classification</td>
<td>Inho Choi and Dajin Kim</td>
</tr>
<tr>
<td>Segmentation of Abdominal Organs incorporating Prior Knowledge in Small Animal CT</td>
<td>SooMin Song, Myoung-Hee Kim</td>
</tr>
<tr>
<td>Method of interest points characterization based C-HOG local descriptor</td>
<td>Manuel Grand-brochier, Christophe Tilmant and Michel Dhome</td>
</tr>
<tr>
<td>Stereo-Based Object Segmentation Combining Spatio-Temporal Information</td>
<td>Yingdong Ma, Qian Chen</td>
</tr>
<tr>
<td>Fast Motion Estimation Based on Search Range Adjustment Using Neighboring MVDs</td>
<td>Hyun-Soo Kang and Jae-Hyeung Park</td>
</tr>
<tr>
<td>Towards Computational Understanding of Skill Levels in Simulation-based Surgical Training via Automatic Video Analysis</td>
<td>Qiang Zhang, Baoxin Li</td>
</tr>
<tr>
<td>Biomedical Image Retrieval in a Fuzzy Feature Space with affine Region Detection and Vector Quantization of a Scale-Invariant Descriptor</td>
<td>Md Mahmudur Rahman, Sameer K. Antani, and George R. Thoma</td>
</tr>
<tr>
<td>Model Distribution Dependant Complexity Estimation on Textures</td>
<td>Agustin Mailingyz, Tomas Crivelliy, Bruno Cernuschi-Frias</td>
</tr>
<tr>
<td>Integrating Multiple Uncalibrated Views for Human 3D Pose Estimation</td>
<td>Zibin Wang and Ronald Chung</td>
</tr>
</tbody>
</table>
Poster Session (cont'd)
Tuesday, November 30th (1:30pm – 3:30pm)

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A novel histogram-based feature representation and its application in Sport Players Classification</td>
<td>Paolo Spagnolo, Pier Luigi Mazzeo, Marco Leo, and Tiziana D’Orazio</td>
</tr>
<tr>
<td>Facial Expression Recognition Using Facial Features and Manifold Learning</td>
<td>Raymond Ptucha and Andreas Savakis</td>
</tr>
<tr>
<td>Blurring Mean-Shift with a Restricted Data-Set Modification for Applications in Image Processing</td>
<td>Eduard Sojka, Jan Gaura, Stepan Srubar, Tomas Fabian, and Michal Krumnikl</td>
</tr>
<tr>
<td>Detecting Straight Line Segments Using a Triangular Neighborhood</td>
<td>Shengzhi Du, Chunling Tu, and Barend Jacobus van Wyk</td>
</tr>
<tr>
<td>Size Distribution Estimation of Stone Fragments via Digital Image Processing</td>
<td>Mohammad Salehizadeh and Mohammad T. Sadeghi</td>
</tr>
<tr>
<td>Image Enhancement by Median Filters in Algebraic Reconstruction Methods: An Experimental Study</td>
<td>Norbert Hantos and Peter Balazs</td>
</tr>
<tr>
<td>3D Curvature-Based Shape Descriptors for Face Segmentation: An Anatomical-Based Analysis</td>
<td>Augusto Salazar, Alexander Ceron and Flavio Prieto</td>
</tr>
<tr>
<td>Computational Hemodynamics in Intracranial Vessels Reconstructed from Biplane Angiograms</td>
<td>Fabien Scalzo, Qing Hao, Alan M. Walczak, Xiao Hu, Yiemeng Hoi, Kenneth R. Hoffmann, David S. Liebeskind</td>
</tr>
<tr>
<td>Object Distance Estimation Based on Stereo Vision and Color Segmentation with Region Matching</td>
<td>Guangming Xiong, Xin Li, Junqiang Xi, Spencer G. Fowers and Huiyan Chen</td>
</tr>
<tr>
<td>Multiscale Information Fusion by Graph Cut through Convex Optimization</td>
<td>Yinhui Zhang, Yunsheng Zhang, and Zifen He</td>
</tr>
<tr>
<td>A Fast Level Set-Like Algorithm for Region-Based Active Contours</td>
<td>Martin Maska, Pavel Matula, Ondrej Danek, and Michal Kozubek</td>
</tr>
<tr>
<td>A Novel Hardware Architecture for Rapid Object Detection Based on Adaboost Algorithm</td>
<td>Tinghui WANG, Feng ZHAO, Jiang WAN and Yongxin ZHU</td>
</tr>
<tr>
<td>Using Perceptual Color Contrast for Color Image Processing</td>
<td>Guangming Xiong, Dah-Jye Lee, Spencer G. Fowers, Jianwei Gong and Huiyan Chen</td>
</tr>
<tr>
<td>GPU Acceleration of Robust Point Matching</td>
<td>Chad Mourning, Scott Nykl, Huihui Xu, David Chelberg, and Jundong Liu</td>
</tr>
<tr>
<td>A Wavelet-based Face Recognition System Using Partial Information</td>
<td>H.F. Neo, C.C. Teo, Andrew B.J. Teoh</td>
</tr>
<tr>
<td>A Study of Hierarchical Correlation Clustering for Scientific Volume Data</td>
<td>Yi Gu and Chaoli Wang</td>
</tr>
<tr>
<td>Subversion Statistics Sifter</td>
<td>Christoph Muller, Guido Reina, Michael Burch, Daniel Weiskopf</td>
</tr>
<tr>
<td>A Lossy/Lossless Coding Algorithm Using Histogram</td>
<td>Sunil Bhooshan and Shipra Sharma</td>
</tr>
</tbody>
</table>
Poster Session (cont'd)
Tuesday, December 30\(^{th}\) (1:30pm – 3:30pm)

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo Matching in Mean Shift Attractor Space</td>
<td>Michal Krumnik</td>
</tr>
</tbody>
</table>
One of the fundamental problems of computer vision is to extract 3D shape and motion from images. This can be achieved when a scene or object is observed from different viewpoints or over a period of time. There is a wide range of applications, ranging from digitizing cultural heritage to vision-based autonomous robot navigation. This talk will present several approaches to solve this problem. First, we’ll discuss techniques for 3D shape recovery for static objects and scenes. One particular case is the 3D mapping and localization in large environments from images, e.g. urban 3D reconstruction from vehicle-borne cameras or localization from cell-phone images. Next, we’ll shift our focus to modeling dynamic scenes, e.g. people who are moving around. In addition to explicitly 3D modeling an event, we’ll consider the possibility to perform video-based rendering from casually captured videos.

Speaker Bio-Sketch: Marc Pollefeys is a full professor in the Dept. of Computer Science of ETH Zurich since 2007 where he is the head of the Institute for Visual Computing and leads the Computer Vision and Geometry lab. He currently also remains associated with the Dept. of Computer Science of the University of North Carolina at Chapel Hill where he started as an assistant professor in 2002 and became an associate professor in 2005. Before this he was a postdoctoral researcher at the Katholieke Universiteit Leuven in Belgium, where he also received his M.S. and Ph.D. degrees in 1994 and 1999, respectively. His main area of research is computer vision. One of his main research goals is to develop flexible approaches to capture visual representations of real world objects, scenes and events. Dr. Pollefeys has received several prizes for his research, including a Marr prize, an NSF CAREER award, a Packard Fellowship and a European Research Council Starting Grant. He is the author or co-author of more than 130 peer-reviewed publications. He is the General Chair for the European Conference on Computer Vision 2014 (ECCV), was a Program Co-Chair for the IEEE Conference on Computer Vision and Pattern Recognition 2009 (CVPR), was general/program co-chair of the Third Symposium on 3D Data Processing, Visualization and Transmission and has organized workshops and courses at major vision and graphics conferences and has served on the program committees of many conferences. Prof. Pollefeys is/was on the Editorial Board of the IEEE Transactions on Pattern Analysis and Machine Intelligence and the International Journal of Computer Vision as well as several other journals in computer vision, graphics and robotics.
KEYNOTE TALK
Monday, November 29, 2010
1:30PM – 2:30 PM / Ballrooms 4-5

Las Vegas, November 29 - December 1, 2010

Anywhere Interfaces - Scaling and Adapting Mixed Reality,
Real-Time Computer Vision, and Visualization

Tobias Hollerer
Department of Computer Science
University of California at Santa Barbara

Abstract

The biggest obstacle to intuitive context-aware computing in the physical world is no longer a lack of suitable computational platforms. Ultra-mobile personal and tablet computers are finding new users beyond their classic niche applications and the number of smartphone users is projected to exceed one billion worldwide by 2014. But there are technological limitations in scaling the user interface to something that resembles seamless interaction with the physical world and a globally distributed social network. Augmented reality is seen as a technology with great potential to provide a new browsing experience for context-aware computing, and is increasingly used in advertising and entertainment, but currently offered solutions for personal computing fall short in accuracy, robustness, and usability. This talk discusses how research in augmented and virtual reality, real-time computer vision, and information visualization might help bring about new interaction possibilities for global personal and social computing in, and related to, the physical world.

Speaker Bio-Sketch: Tobias Hollerer is an Associate Professor of Computer Science at the University of California, Santa Barbara, where he co-directs the Four Eyes Laboratory, conducting research in the four I's of Imaging, Interaction, and Innovative Interfaces. Dr. Hollerer holds a graduate degree in informatics from the Technical University of Berlin and an MS and PhD in computer science from Columbia University. He is a recipient of the National Science Foundation's CAREER award, for his work on "Anywhere Augmentation", which enables mobile computer users to place annotations in 3D space wherever they go. Dr. Hollerer is a principal investigator on the UCSB Allosphere project, designing and utilizing display and interaction technologies for a three-story surround-view immersive situation room. Dr. Hollerer has published more than 100 international journal and conference papers in the areas of augmented and virtual reality, information visualization, 3D displays and interaction, mobile and wearable computing, and adaptive user interfaces.
Visual Analytics for Investigative Analysis and Exploration of Documents and Data

John Stasko
School of Interactive Computing
Georgia Institute of Technology

Abstract

Whether investigators are fighting crime, curing diseases, deciding what car to buy, or researching a new field, inevitably they will encounter text documents. Unfortunately, plain (unstructured) text documents are difficult to analyze and understand especially large collections of documents. The new field of visual analytics holds promise for helping investigators with such problems. Visual analytics combines computational data analysis with interactive visualization in the context of understanding how people think and reason. It can be particularly effective in situations when the data is large and unfamiliar, and the analyst must browse and explore to learn about a situation or domain. In this talk I will describe principles from the field, illustrating how visualizations help people make sense of data. Additionally, I will introduce the Jigsaw visual analytics system that helps investigators explore and understand collections of unstructured and semi-structured text documents. In essence, Jigsaw helps investigators "put the pieces together" and gain a deeper understanding of the contents of the documents. The system pairs computational text analysis with a collection of visualizations that each portray different aspects of the documents, including connections between entities.

Speaker Bio-Sketch: John Stasko is a Professor and the Associate Chair of the School of Interactive Computing at the Georgia Institute of Technology, where he has been a faculty member since 1989. He is Director of the Information Interfaces Research Group and his primary research area is human-computer interaction, with a specific focus on information visualization and visual analytics. His research group develops ways to help people and organizations explore, analyze, understand, and make sense of data. Stasko presently is or formerly has been on the editorial board of the journals ACM Transactions on Computer-Human Interaction, IEEE Transactions on Visualization and Computer Graphics, International Journal of Human-Computer Studies, Journal of Visual Languages and Computing, and Information Visualization. He was General Chair in 2007 and Papers Co-Chair in 2005 and 2006 for the IEEE Information Visualization (InfoVis) Conference, and he was Papers Co-Chair for the 2009 IEEE Visual Analytics Science and Technology (VAST) Symposium. Stasko currently serves on the Steering Committee for the IEEE Information Visualization Conference and the ACM Symposium on Software Visualization.
Abstract

There's a big difference between looking at a photograph of a place and being there. But what if you had access to a database of every possible image of that place and could conjure up any view at will? With billions of photographs currently available online, the Internet is beginning to resemble such a database, capturing our world's sites from a huge number of vantage points and viewing conditions. For example, a Google image search for "notre dame" or "grand canyon" each return millions of photos, showing the sites from myriad viewpoints, different times of day and night, and changes in season, weather and decade. This talk explores ways of transforming this massive, unorganized photo collection into 3D scene reconstructions and visualizations of the world's sites, cities, and landscapes. After a brief recap of our work on Photo Tourism and Photosynth, I will focus on current efforts and newest results in the domains of city-scale 3D reconstruction and new visual interfaces for navigating photo collections.

Speaker Bio-Sketch: Steve Seitz is a Professor in the Department of Computer Science and Engineering at the University of Washington. He also directs an imaging group at Google's Seattle office. He received his B.A. in computer science and mathematics at the University of California, Berkeley in 1991 and his Ph.D. in computer sciences at the University of Wisconsin, Madison in 1997. Following his doctoral work, he spent one year visiting the Vision Technology Group at Microsoft Research and the subsequent two years as an Assistant Professor in the Robotics Institute at Carnegie Mellon University. He joined the faculty at the University of Washington in July 2000. He was twice awarded the David Marr Prize for the best paper at the International Conference of Computer Vision, and he has received an NSF Career Award, and ONR Young Investigator Award, and an Alfred P. Sloan Fellowship. His work on Photo Tourism (joint with Noah Snavely and Rick Szeliski) formed the basis of Microsoft's Photosynth technology. Professor Seitz is interested in problems in computer vision and computer graphics. His current research focuses on 3D modeling and visualization from large photo collections.
KEYNOTE TALK
Wednesday, December 1, 2010
8:30AM – 9:30 AM / Ballrooms 4-5

Las Vegas, November 29 - December 1, 2010

Challenges and Opportunities for Extracting
Cardiovascular Risk Biomarkers from non-contrast CT data

Ioannis A. Kakadiaris
Computational Biomedicine Lab
Depts. of CS, ECE, and Biomedical Engineering, U. of Houston

Abstract

In this talk, I will first offer a short overview of the research activities of the Computational Biomedicine Laboratory, University of Houston. Then, I will present our research in the area of biomedical image computing for the mining of information from cardiovascular imaging data for the detection of persons with a high likelihood of developing a heart attack in the near future (vulnerable patients). Specifically, I’ll present methods for detection and segmentation of anatomical structures, and shape and motion estimation of dynamic organs. The left ventricle in non-invasive cardiac MRI data is extracted using a new multi-class, multi-feature fuzzy connectedness method and deformable models for shape and volume estimation. In non-invasive cardiac CT data, the thoracic fat is detected using a relaxed version of multi-class, multi-feature fuzzy connectedness method. Additionally, the calcified lesions in the coronary arteries are identified and quantified using a hierarchical supervised learning framework from the CT data. In non-invasive contrast-enhanced CT, the coronary arteries are detected using our tubular shape detection method for motion estimation and, possibly, for non-calcified lesion detection. In invasive IVUS imaging, our team has developed a unique IVUS acquisition protocol and novel signal/image analysis methods for the detection (for the first time in-vivo) of ‘vasa vasorum’ (VV). The VV are micro-vessels that are commonly present to feed the walls of larger vessels; however, recent clinical evidence has uncovered their tendency to proliferate around areas of inflammation, including the inflammation associated with vulnerable plaques. In summary, our work is focused on developing innovative computational tools to mine quantitative parameters from imaging data for early detection of asymptomatic cardiovascular patients. The expected impact of our work stems from the fact that sudden heart attack remains the number one cause of death in the US, and unpredicted heart attacks account for the majority of the $280 billion burden of cardiovascular diseases.

Speaker Bio-Sketch: Prof. Ioannis A. Kakadiaris is an Eckhard Pfeiffer Professor of Computer Science, Electrical & Computer Engineering, and Biomedical Engineering at the University of Houston. He joined UH in August 1997 after a postdoctoral fellowship at the University of Pennsylvania. Ioannis earned his B.Sc. in physics at the University of Athens in Greece, his M.Sc. in computer science from Northeastern University and his Ph. D. at the University of Pennsylvania. He is the founder of the Computational Biomedicine Lab (www.cbl.uh.edu) and in 2008 he directed the Methodist-University of Houston-Weill Cornell Medical College Institute for Biomedical Imaging Sciences (IBIS) (ibis.uh.edu). His research interests include cardiovascular informatics, biomedical image analysis, biometrics, computer vision, and pattern recognition. Dr. Kakadiaris is the recipient of a number of awards, including the NSF Early Career Development Award, Schlumberger Technical Foundation Award, UH Computer Science Research Excellence Award, UH Enron Teaching Excellence Award, and the James Muller Vulnerable Plaque Young Investigator Prize. His research has been featured on The Discovery Channel, National Public Radio, KPRC NBC News, KTRH ABC News, and KHOU CBS News.
Ubiquitous Displays: A Distributed Network of Active Displays

Aditi Majumder
Department of Computer Science
University of California, Irvine

Abstract

This talk presents our work-in-progress on developing a new display paradigm where displays are not mere carriers of information, but active members of the workspace interacting with data, user, environment and other displays. The goal is to integrate such active displays seamlessly with the environment making them ubiquitous to multiple users and data. Such ubiquitous display can be a critical component of the future collaborative workspace. We have developed an active display unit, a projector augmented with sensors, and an embedded computation and communication unit. We are exploring for the first time, the challenges and capabilities resulting from instrumenting a workspace with a distributed network of such active displays to achieve ubiquitous displays. Our main objective is to develop novel distributed methodologies (a) to cover existing surfaces (e.g. walls, floors) - that can deviate considerably from planar, white and Lambertian - with multiple active displays; (b) provide scalability and recon durability (in terms of scale, resolution and form factor) of displays; (c) provide a framework for shared viewing and interaction modalities for multiple users.

Speaker Bio-Sketch: Aditi Majumder is an associate professor at the Department of Computer Science in University of California, Irvine. She received her BE in Computer Science and Engineering from Jadavpur University, Calcutta, India in 1996 and PhD from Department of Computer Science, University of North Carolina at Chapel Hill in 2003. Her research area is computer graphics and vision, image processing with primary focus on multi-projector displays. Her research aims to make multi-projector displays truly commodity products and easily accessible to the common man. Her significant research contributions include photometric and color registration across multi-projector displays, enabling use of imperfect projectors in tiled displays and more recently a distributed framework for tiled displays via a distributed network of projector-camera pairs. She is the co-author of the book "Practical Multi-Projector Display Design". She was the program and general co-chair of the Projector-Camera Workshop (PROCAMS) 2005 and the program chair of PROCAMS 2009. She was also the conference co-chair for ACM Virtual Reality Software and Technology 2007. She has played a key role in developing the first curved screen multi-projector display being marketed by NEC/Alienware currently and is an advisor at Disney Imagineering for advances in their projection based theme park rides. She is the recipient of the NSF CAREER award in 2009 for Ubiquitous Displays Via a Distributed Framework.
Steering Committee

Bebis George, University of Nevada, Reno, USA
Boyle Richard, NASA Ames Research Center, USA
Parvin Bahram, Lawrence Berkeley National Laboratory, USA
Koracin Darko, Desert Research Institute, USA

Area Chairs

- **Computer Vision**
 Chang Ronald, The Chinese University of Hong Kong, Hong Kong
 Hammoud Riad, DynaVox Systems, USA

- **Computer Graphics**
 Hussain Muhammad, King Saud University, Saudi Arabia
 Tan Kar-Han, Hewlett Packard Labs, USA

- **Virtual Reality**
 Crawfis Roger, Ohio State University, USA
 Thalman Daniel, EPFL, Switzerland

- **Visualization**
 Kao David, NASA Ames Research Lab, US
 Avila Lisa, Kitware, USA

Publicity

Erol Ali, Ocali Information Technology, Turkey

Local Arrangements

Regentova Emma, University of Nevada, Las Vegas, USA

Special Tracks

Porikli Fatih, Mitsubishi Electric Research Labs, USA
International Program Committee

(Area 1) Computer Vision

Abidi Besma, University of Tennessee, USA
Abou-Nasr Mahmoud, Ford Motor Company, USA
Agaiian Sos, University of Texas at San Antonio, USA
Aggarwal J. K., University of Texas, Austin, USA
Amayeh Gholarneza, Eyeecom, USA
Agouris Peggy, George Mason University, USA
Argyros Antonis, University of Crete, Greece
Asari Vijayan, University of Dayton, USA
Basu Anup, University of Alberta, Canada
Bekris Kostas, University of Nevada at Reno, USA
Belyaev Alexander, Max-Planck-Institut fuer Informatik, Germany
Bensrhair Abdelaziz, INSA-Rouen, France
Bhatia Sanjiv, University of Missouri-St. Louis, USA
Bimber Oliver, Johannes Kepler University Linz, Austria
Bioucas Jose, Instituto Superior Tecnico, Lisbon, Portugal
Birchfield Stan, Clemson University, USA
Bourbakis Nikolaos, Wrght State University, USA
Brimkov Valentijn, State University of New York, USA
Campadelli Paola, Universita degli Studi di Milano, Italy
Cavallaro Andrea, Queen Mary, University of London, UK
Charalampidis Dimitrios, University of New Orleans, USA
Chellappa Rama, University of Maryland, USA
Chen Yang, HRL Laboratories, USA
Cheng Hui, Sarnoff Corporation, USA
Cochran Steven Douglas, University of Pittsburgh, USA
Cremers Daniel, University of Bonn, Germany
Cui Jinshi, Peking University, China
Darbon Jerome, CNRS-Ecole Normale Superieure de Cachan, France
Davis James W., Ohio State University, USA
Debrunner Christian, Colorado School of Mines, USA
Demirdjian David, MIT, USA
Duan Ye, University of Missouri-Columbia, USA
Doulamis Anastasios, National Technical University of Athens, Greece
Dowdall Jonathan, 510 Systems, USA
El-Ansari Mohamed, Ibn Zohr University, Morocco
El-Gamal Ahmed, University of New Jersey, USA
Eng How Lung, Institute for Infocomm Research, Singapore
Erol Ali, Ocali Information Technology, Turkey
Fan Guoliang, Oklahoma State University, USA
Ferri Francesc, Universitat de Valencia, Spain
Ferryman James, University of Reading, UK
Foresti GianLuca, University of Udine, Italy
Fowlkes Charless, University of California, Irvine, USA
Fukui Kazuhiro, The University of Tsukuba, Japan
Galata Aphrodite, The University of Manchester, UK
Georgescu Bogdan, Siemens, USA
Gleason, Shaun, Oak Ridge National Laboratory, USA
Goh Wooi-Boon, Nanyang Technological University, Singapore
Guerra-Filho Gutemberg, University of Texas Arlington, USA
Guevara, Angel Miguel, University of Porto, Portugal
Gustafson David, Kansas State University, USA
Harville Michael, Hewlett Packard Labs, USA
He Xiangjian, University of Technology, Sydney, Australia
Heikkila Janne, University of Oulu, Finland
Heyden Anders, Lund University, Sweden
Hongbin Zha, Peking University, China
Hou Zujun, Institute for Infocomm Research, Singapore
Hua Gang, Nokia Research Center, USA
Imiya Atsushi, Chiba University, Japan
Jia Kevin, IGT, USA
Kamberov George, Stevens Institute of Technology, USA
Kampel Martin, Vienna University of Technology, Austria
Kamberova Gerda, Hofstra University, USA
Kakadiaris Ioannis, University of Houston, USA
Kettebekov Sanzhar, Keane inc., USA
Khan Hameed Ullah, King Saud University, Saudi Arabia
Kim Tae-Kyun, University of Cambridge, UK
Kimia Benjamin, Brown University, USA
Kisacanin Branislav, Texas Instruments, USA
Klette Reinhard, Auckland University, New Zeland
Kokkinos Iasonas, Ecole Centrale Paris, France
Kollias Stefanos, National Technical University of Athens, Greece
Komodakis Nikos, Ecole Centrale de Paris, France
Kozintsev, Igor, Intel, USA
Kuno, Yoshinori, Saitama University, Japan
Kyungnam Kim, HRL Laboratories, USA
Latecki Longin Jan, Temple University, USA
Lee D. J., Brigham Young University, USA
Li Chunming, Vanderbilt University, USA
Li Fei-Fei, Stanford University, USA
Lin Zhe, Adobe, USA
Lisin Dima, VideoIQ, USA
Lee Seong-Whan, Korea University, Korea
Leung Valerie, Kingston University, UK
Leykin Alex, Indiana University, USA
Li Shuo, GE Healthcare, Canada
Li Wenjing, STI Medical Systems, USA
Liu Jianzhuang, The Chinese University of Hong Kong, Hong Kong
Loss Leandro, Lawrence Berkeley National Lab, USA
Ma Yunqian, Honeywell Labs, USA
Maeder Anthony, University of Western Sydney, Australia
Makris Dimitrios, Kingston University, UK
Maltoni Davide, University of Bologna, Italy
Mauer Georg, University of Nevada, Las Vegas, USA
McGraw Tim, West Virginia University, USA
Medioni Gerard, University of Southern California, USA
Melchón Javier, Universitat Oberta de Catalunya, Spain
Metaxas Dimitris, Rutgers University, USA
Miller Ron, Wright Patterson Air Force Base, USA
Ming Wei, Konica Minolta, USA
Mirmehdi Majid, Bristol University, UK
Monekosso Dorothy, Kingston University, UK
Mueller Klaus, SUNY Stony Brook, USA
Mulligan Jeff, NASA Ames Research Center, USA
Murray Don, Point Grey Research, Canada
Nait-Charif Hammadi, Bournemouth University, UK
Nefian Ara, NASA Ames Research Center, USA
Nicolescu Mircea, University of Nevada, Reno, USA
Nixon Mark, University of Southampton, UK
Nolle Lars, The Nottingham Trent University, UK
Ntalianis Klimis, National Technical University of Athens, Greece
Or Siu Hang, The Chinese University of Hong Kong, Hong Kong
Papadourakis George, Technological Education Institute, Greece
Papanikolopoulos Nikolaos, University of Minnesota, USA
Pati Peeta Basa, First Indian Corp., India
Patras Ioannis, Queen Mary University, London, UK
Petrakis Euripides, Technical University of Crete, Greece
Peyronnet Sylvain, LRDE/EPITA, France
Pinhanez Claudio, IBM Research, Brazil
Piccardi Massimo, University of Technology, Australia
Pietikäinen Matti, LRDE/University of Oulu, Finland
Porikli Fatih, Mitsubishi Electric Research Labs, USA
Prabhakar Salil, DigitalPersona Inc., USA
Prati Andrea, University of Modena and Reggio Emilia, Italy
Prokhorov Danil, Toyota Research Institute, USA
Prokhorov Pylvanainen Timo, Nokia, Finland
Qi Hairong, University of Tennessee at Knoxville, USA
Qian Gang, Arizona State University, USA
Raftopoulos Costas, National Technical University of Athens, Greece
Reed Michael, Blue Sky Studios, USA
Regazzoni Carlo, University of Genoa, Italy
Regentova Emma, University of Nevada, Las Vegas, USA
Remagnino Paolo, Kingston University, UK
Ribeiro Eraldo, Florida Institute of Technology, USA
Robles-Kelly Antonio, National ICT Australia (NICTA), Australia
Ross Arun, West Virginia University, USA
Saltian Andrea, The College of New Jersey, USA
Samal Ashok, University of Nebraska, USA
Sato Yoichi, The University of Tokyo, Japan
Samir Tamer, Ingersoll Rand Security Technologies, USA
Sandberg Kristian, Computational Solutions, USA
Sarti Augusto, DEI Politecnico di Milano, Italy
Savakis Andreas, Rochester Institute of Technology, USA
Schaefer Gerald, Loughborough University, UK
Scalzo Fabien, University of California at Los Angeles, USA
Scharcanski Jacob, UFRGS, Brazil
Shah Mubarak, University of Central Florida, USA
Shi Pengcheng, The Hong Kong University of Science and Technology, Hong Kong
Shimada Nobutaka, Ritsumeikan University, Japan
Singh Meghna, University of Alberta, Canada
Singh Rahul, San Francisco State University, USA
Skurikhin Alexei, Los Alamos National Laboratory, USA
Souvenir, Richard, University of North Carolina - Charlotte, USA
Su Chung-Yen, National Taiwan Normal University, Taiwan
Sugihara Kokichi, University of Tokyo, Japan
Sun Zehang, Apple, USA
Syeda-Mahmood Tanveer, IBM Almaden, USA
Tan Tieniu, Chinese Academy of Sciences, China
Tavakkoli Alireza, University of Houston - Victoria, USA
Tavares, Joao, Universidade do Porto, Portugal
Teoh Eam Khwang, Nanyang Technological University, Singapore
Thiran Jean-Philippe, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
Tistarelli Massimo, University of Sassari, Italy
(Area 2) Computer Graphics

Abd Rahni Mt Piah, Universiti Sains Malaysia, Malaysia
Abram Greg, IBM TJ Watson Research Center, USA
Adamo-Villani Nicoletta, Purdue University, USA
Agu Emmanuel, Worcester Polytechnic Institute, USA
Andres Eric, Laboratory XLIM-SIC, University of Poitiers, France
Artusi Alessandro, CaSToRC Cyprus Institute, Cyprus
Baciu George, Hong Kong PolyU, Hong Kong
Balcisoy Selim Saffet, Sabanci University, Turkey
Barneva Reneta, State University of New York, USA
Bartoli Vilanova Anna, Eindhoven University of Technology, Netherlands
Belyaev Alexander, Max-Planck-Institut fuer Informatik, Germany
Benes Bedrich, Purdue University, USA
Berberich Eric, Max-Planck Institute, Germany
Bilalis Nicholas, Technical University of Crete, Greece
Bimber Oliver, Johannes Kepler University Linz, Austria
Bohez Erik, Asian Inst of Tech, Thailand
Bouatouch Kadi, University of Rennes I, IRISA, France
Brimkov Valentim, State University of New York, USA
Brown Ross, Queensland University of Technology, Australia
Callahan Steven, University of Utah, USA
Chen Min, University of Wales Swansea, UK
Cheng Irene, University of Alberta, Canada
Chiang Yi-Jen, Polytechnic Institute of New York University, USA
Choi Min, University of Colorado at Denver, USA
Comba Joao, Univ. Fed. do Rio Grande do Sul, Brazil
Cremer Jim, University of Iowa, USA
Culbertson Bruce, HP Labs, USA
Debattista Kurt, University of Warwick, UK
Deng Zhigang, University of Houston, USA
Dick Christian, Technical University of Munich, Germany
DiVerdi Stephen, Adobe, USA
Dingliana John, Trinity College, Ireland
El-Sana Jihad, Ben Gurion University of The Negev, Israel
Entezari Alireza, University of Florida, USA
Fiorio Christophe, Universite Montpellier 2, LIRMM, France
Floriani Leila De, University of Genova, Italy
Gaither Kelly, University of Texas at Austin, USA
Gao Chunyu, Epson Research and Development, USA
Geist Robert, Clemson University, USA
Gelb Dan, Hewlett Packard Labs, USA
Gotz David, IBM, USA
Gooch Amy, University of Victoria, Canada
Gu David, State University of New York at Stony Brook, USA
Guerra-Filho Gutemberg, University of Texas Arlington, USA
Habib Zulfikar, National University of Computer and Emerging Sciences, Pakistan
Hadhiger Markus, KAUST, Saudi Arabia
Haller Michael, Upper Austria University of Applied Sciences, Austria

Wong Kennith, The University of Hong Kong, Hong Kong
Xiang Tao, Queen Mary, University of London, UK
Xue Xinwei, Fair Isaac Corporation, USA
Xu Meihe, University of California at Los Angeles, USA
Yang Ruigang, University of Kentucky, USA
Yi Lijun, SUNY at Binghampton, USA
Yu Kai, NEC Labs, USA
Yu Ting, GE Global Research, USA
Yu Zeyun, University of Wisconsin-Milwaukee, USA
Yuan Chunrong, University of Tuebingen, Germany
Zhang Yan, Delphi Corporation, USA
Zhou Huiyu, Queen's University Belfast, UK
Hamza-Lup Felix, Armstrong Atlantic State University, USA
Han JungHyun, Korea University, Korea
Hao Xuejun, Columbia University and NYSPI, USA
Hernandez Jose Tiberio, Universidad de los Andes, Colombia
Huang Mao Lin, University of Technology, Australia
Huang Zhiyong, Institute for Infocomm Research, Singapore
Joaquim Jorge, Instituto Superior Técnico, Portugal
Ju Tao, Washington University, USA
Julier Simon J., University College London, UK
Kakadiaris Ioannis, University of Houston, USA
Kamberov George, Stevens Institute of Technology, USA
Kim Young, Ewha Womans University, Korea
Klosowski James, AT&T Labs, USA
Kobbelt Leif, RWTH Aachen, Germany
Kuan Lee Hwee, Bioinformatics Institute, A*STAR, Singapore
Lai Shuhua, Virginia State University, USA
Lakshmanan Geetika, IBM TJ Watson Research Center, USA
Lee Chang Ha, Chung-Ang University, Korea
Lee Tong-Yee, National Cheng-Kung University, Taiwan
Levine Martin, McGill University, Canada
Lewis Bob, Washington State University, USA
Li Frederick, University of Durham, UK
Lindstrom Peter, Lawrence Livermore National Laboratory, USA
Linsen Lars, Jacobs University, Germany
Loviscach Joern, Fachhochschule Bielefeld (University of Applied Sciences), Germany
Magnor Marcus, TU Braunschweig, Germany
Majumder Aditi, University of California, Irvine, USA
Mantler Stephan, VRVis Research Center, Austria
Martin Ralph, Cardiff University, UK
McGraw Tim, West Virginia University, USA
Meenakshisundaram Gopi, University of California-Irvine, USA
Mendoza Cesar, NaturalMotion Ltd., USA
Metaxas Dimitris, Rutgers University, USA
Myles Ashish, University of Florida, USA
Nait-Charif Hammadi, University of Dundee, Scotland
Nasri Ahmad, American University of Beirut, Lebanon
Noma Tsukasa, Kyushu Institute of Technology, Japan
Okada Yoshihiro, Kyushu University, Japan
Olague Gustavo, CICESE Research Center, Mexico
Oliveira Manuel M., Univ. Fed. do Rio Grande do Sul, Brazil
Ostromoukhov Victor M., University of Montreal, Canada
Pascucci Valerio, University of Utah, USA
Peters Jorg, University of Florida, USA
Qin Hong, State University of New York at Stony Brook, USA
Razdan Anshuman, Arizona State University, USA
Rosenbaum Rene, University of California at Davis, USA
Sander Pedro, The Hong Kong University of Science and Technology, Hong Kong
Sarfraz Muhammad, Kuwait University, Kuwait
Scateni Riccardo, University of Calgiari, Italy
Schaefer Scott, Texas A&M University, USA
Sequin Carlo, University of California-Berkeley, USA
Shead Timothy, Sandia National Laboratories, USA
Sourin Alexei, Nanyang Technological University, Singapore
Stammingier Marc, REVES/INRIA, France
Su Wen-Poh, Griffith University, Australia
Staadt Oliver, University of Rostock, Germany
Tarini Marco, Università dell'Insubria (Varese), Italy
Teschner Matthias, University of Freiburg, Germany
Tsong Ng Tian, Institute for Infocomm Research, Singapore
Umlauf Georg, HTWG Constance, Germany
Wald Ingo, University of Utah, USA
Wang Sen, Kodak, USA
Wimmer Michael, Technical University of Vienna, Austria
Wyman Chris, University of Iowa, USA
Yang Qing-Xiong, University of Illinois at Urbana, Champaign, USA
Yang Ruigang, University of Kentucky, USA
Ye Duan, University of Missouri-Columbia, USA
Yi Beifang, Salem State College, USA
Yin Lijun, Binghamton University, USA
Yoo Terry, National Institutes of Health, USA
Yuan Xiaoru, Peking University, China
Zabulis Xenophon, Foundation for Research and Technology - Hellas (FORTH), Greece
Zhang Eugene, Oregon State University, USA
(Area 3) Virtual Reality

Alcañiz Mariano, Technical University of Valencia, Spain
Arns Laura, Purdue University, USA
Balcişoy Selim, Sabancı University, Turkey
Behringer Reinhold, Leeds Metropolitan University, UK
Benes Bedrich, Purdue University, USA
Bilalis Nicholas, Technical University of Crete, Greece
Blach Roland, Fraunhofer Institute for Industrial Engineering, Germany
Blom Kristopher, University of Hamburg, Germany
Borst Christoph, University of Louisiana at Lafayette, USA
Brady Rachael, Duke University, USA
Brega Jose Remo Ferreira, Universidade Estadual Paulista, Brazil
Brown Ross, Queensland University of Technology, Australia
Bruce Thomas, The University of South Australia, Australia
Bues Matthias, Fraunhofer IAO in Stuttgart, Germany
Chen Jian, Brown University, USA
Cheng Irene, University of Alberta, Canada
Coquillart Sabine, INRIA, France
Craig Alan, NCSA University of Illinois at Urbana-Champaign, USA
Cremer Jim, University of Iowa, USA
Egges Arjan, Universiteit Utrecht, The Netherlands
Encarnacao L. Miguel, Humana Inc, USA
Figueroa Pablo, Universidad de los Andes, Colombia
Fox Jesse, Stanford University, USA
Friedman Doron, IDC, Israel
Froehlich Bernd, Weimar University, Germany
Gregory Michelle, Pacific Northwest National Lab, USA
Gupta Satyandra K., University of Maryland, USA
Hachet Martin, INRIA, France
Haller Michael, FH Hagenberg, Austria
Hamza-Lup Felix, Armstrong Atlantic State University, USA
Hinkenjann Andre, Bonn-Rhein-Sieg University of Applied Sciences, Germany
Hollerer Tobias, University of California at Santa Barbara, USA
Huang Jian, University of Tennessee at Knoxville, USA
Julier Simon J., University College London, UK
Klinker Gudrun, Technische Universität München, Germany
Klosowski James, AT&T Labs, USA
Kozintsev, Igor, Intel, USA
Kuhlen Torsten, RWTH Aachen University, Germany
Liere Robert van, CWI, The Netherlands
Majumder Aditi, University of California, Irvine, USA
Malzbender Tom, Hewlett Packard Labs, USA
Mantler Stephan, VRVis Research Center, Austria
Meyer Joerg, University of California, Irvine, USA
Molineros Jose, Teledyne Scientific and Imaging, USA
Muller Stefan, University of Koblenz, Germany
Paelke Volker, Leibniz Universität Hannover, Germany
Pan Zhigeng, Zhejiang University, China
Papka Michael, Argonne National Laboratory, USA
Peli Eli, Harvard University, USA
Pettifer Steve, The University of Manchester, UK
Pugmire Dave, Los Alamos National Lab, USA
Qian Gang, Arizona State University, USA
Raffin Bruno, Inria, France
Reiners Dirk, University of Louisiana, USA
Richir Simon, Arts et Metiers ParisTech, France
Rodello Ildeberto, University of San Paulo, Brazil
Santhanam Anand, MD Anderson Cancer Center Orlando, USA
Sapidis Nickolas, University of Western Macedonia, Greece
Schulze, Jurgen, University of California - San Diego, USA
Sherman Bill, Jurgen, Indiana University, USA
Slavik Pavel, Czech Technical University in Prague, Czech Republic
Sourin Alexei, Nanyang Technological University, Singapore
Stamming Marc, REVES/INRIA, France
Srikanth Manohar, Indian Institute of Science, India
Staadt Oliver, University of Rostock, Germany
Swan Ed, Mississippi State University, USA
Stefani Oliver, COAT-Basel, Switzerland
Sun Hanqiu, The Chinese University of Hong Kong, Hong Kong
Varsamidis Thomas, Bangor University, UK
Vercher Jean-Louis, Université de la Méditerranée, France
Wald Ingo, University of Utah, USA
Yu Ka Chun, Denver Museum of Nature and Science, USA
Yuan Chunrong, University of Tuebingen, Germany
Zachmann Gabriel, Clausthal University, Germany
Zara Jiri, Czech Technical University in Prague, Czech
Zhang Hui, Indiana University, USA
Zhao Ye, Kent State University, USA
Zyda Michael, University of Southern California, USA

(Area 4) Visualization

Andrienko Gennady, Fraunhofer Institute IAIS, Germany
Apperley Mark, University of Waikato, New Zealand
Balázs Csébfalvi, Budapest University of Technology and Economics, Hungary
Bartoli Anna Vilanova, Eindhoven University of Technology, Netherlands
Brady Rachael, Duke University, USA
Benes Bedrich, Purdue University, USA
Bilalis Nicholas, Technical University of Crete, Greece
Bonneau Georges-Pierre, Grenoble Universits, France
Brown Ross, Queensland University of Technology, Australia
Bühler Katja, VRVIS, Austria
Callahan Steven, University of Utah, USA
Chen Jian, Brown University, USA
Chen Min, University of Wales Swansea, UK
Cheng Irene, University of Alberta, Canada
Chiang Yi-Jen, Polytechnic Institute of New York University, USA
Chourasia Amit, University of California - San Diego, USA
Coming Daniel, Desert Research Institute, USA
Dana Kristin, Rutgers University, USA
DiVerdi Stephen, Adobe, USA
Doleisch Helmut, VRVis Research Center, Austria
Duan Ye, University of Missouri-Columbia, USA
Dwyer Tim, Monash University, Australia
Ebert David, Purdue University, USA
Entezari Alireza, University of Florida, USA
Ertl Thomas, University of Stuttgart, Germany
Floriani Leila De, University of Maryland, USA
Fujishiro Issei, Keio University, Japan
Geist Robert, Clemson University, USA
Goebel Randy, University of Alberta, Canada
Gotz David, IBM, USA
Grinstein Georges, University of Massachusetts Lowell, USA
Goebel Randy, University of Alberta, Canada
Gregory Michelle, Pacific Northwest National Lab, USA
Hadwiger Helmut Markus, VRVis Research Center, Austria
Hagen Hans, Technical University of Kaiserslautern, Germany
Hamza-Lup Felix, Armstrong Atlantic State University, USA
Heer Jeffrey, Armstrong University of California at Berkeley, USA
Hege Hans-Christian, Zuse Institute Berlin, Germany
Hocheiser Harry, University of Pittsburgh, USA
Hollerer Tobias, University of California at Santa Barbara, USA
Hong Lichan, Palo Alto Research Center, USA
Hotz Ingrid, Zuse Institute Berlin, Germany
Jiang Ming, Lawrence Livermore National Laboratory, USA
Joshi Alark, Yale University, USA
Julier Simon J., University College London, UK
Kohlhammer Jörn, Fraunhofer Institut, Germany
Kosara Robert, University of North Carolina at Charlotte, USA
Laramee Robert, Swansea University, UK
Lee Chang Ha, Chung-Ang University, Korea
Lewis Bob, Washington State University, USA
Liere Robert van, CWI, The Netherlands
Lim Ik Soo, Bangor University, UK
Linsen Lars, Jacobs University, Germany
Liu Zhanping, Kitware, Inc., USA
Ma Kwan-Liu, University of California-Davis, USA
Maeder Anthony, University of Western Sydney, Australia
Majumder Aditi, University of California, Irvine, USA
Malpica Jose, Alcala University, Spain
Masutani Yoshitaka, The University of Tokyo Hospital, Japan
Matkovic Kresimir, VRVis Forschungs-GmbH, Austria
Special Tracks

ST1: 3D Mapping, Modeling and Surface Reconstruction

Organizers:
Nefian Ara, Carnegie Mellon University/NASA Ames Research Center, USA
Broxton Michael, Carnegie Mellon University/NASA Ames Research Center, USA
Huertas Andres, NASA Jet Propulsion Lab, USA

Program Committee:
Hancher Matthew, NASA Ames Research Center, USA
Edwards Laurence, NASA Ames Research Center, USA
Bradski Garry, Willow Garage, USA

Zakhor Avideh, University of California at Berkeley, USA
Cavallaro Andrea, University Queen Mary, London, UK
Bouguet Jean-Yves, Google, USA

Organizers:
Albu Alexandra Branzan, University of Victoria, Canada
Bebis George, University of Nevada, Reno, USA

Program Committee:
Bergevin Robert, University of Laval, Canada
Crawfis Roger, Ohio State University, USA
Hammoud Riad, DynaVox Systems, USA
Kakadiaris Ioannis, University of Houston, USA, USA

Laurendeau Denis, Laval University, Quebec, Canada
Maxwell Bruce, Colby College, USA
Stockman George, Michigan State University, USA

ST3: Low-Level Color Image Processing

Organizers:
Celebi M. Emre, Louisiana State University, USA
Smolka Bogdan, Silesian University of Technology, Poland
Schaefer Gerald, Loughborough University, UK
Plataniotis Konstantinos, University of Toronto, Canada
Horiuchi Takahiko, Chiba University, Japan

Program Committee:
Aygun Ramazan, University of Alabama in Huntsville, USA
Battiato Sebastiano, University of Catania, Italy
Hardeberg Jon, Gjøvik University College, Norway

Hwang Sae, University of Illinois at Springfield, USA
Kawulok Michael, Silesian University of Technology, Poland
ST4: Low Cost Virtual Reality: Expanding Horizons

Organizers:
Sherman Bill, Indiana University, USA
Wernert Eric, Indiana University, USA

Program Committee:
Coming Daniel, Desert Research Institute, USA
Craig Alan, University of Illinois/NCSA, USA
Keefe Daniel, University of Minnesota, USA
Kreylos Oliver, University of California at Davis, USA
O’Leary Patrick, Idaho National Laboratory, USA
Smith Randy, Oakland University, USA
Su Simon, Princeton University, USA
Will Jeffrey, Valparaiso University, USA

ST5: Computational Bioimaging

Organizers:
Tavares João Manuel R. S., University of Porto, Portugal
Jorge Renato Natal, University of Porto, Portugal
Cunha Alexandre, Caltech, USA

Program Committee:
Santis De Alberto, Università degli Studi di Roma "La Sapienza", Italy
Reis Ana Mafalda, Instituto de Ciências Biomédicas Abel Salazar, Portugal
Barrutia Arrate Muñoz, University of Navarra, Spain
Calvo Begoña, University of Zaragoza, Spain
Constantinou Christos, Stanford University, USA
Iacoviello Daniela, Università degli Studi di Roma "La Sapienza", Italy
Ushizima Daniela, Lawrence Berkeley National Lab, USA
Ziou Djemel, University of Sherbrooke, Canada
Pires Eduardo Borges, Instituto Superior Técnico, Portugal
Sgallari Fiorella, University of Bologna, Italy
Perales Francisco, Balearic Islands University, Spain
Qiu Guoping, University of Nottingham, UK
Hanchuan Peng, Howard Hughes Medical Institute, USA
Pistori Hemerson, Dom Bosco Catholic University, Brasil
Yanovsky Igor, Jet Propulsion Laboratory, USA
Corso Jason, SUNY at Buffalo, USA
Maldonado Javier Melenchón, Open University of Catalonia, Spain
Marques Jorge S., Instituto Superior Técnico, Portugal
Aznar Jose M. García, University of Zaragoza, Spain
Vese Luminita, University of California at Los Angeles, USA
Reis Luís Paulo, University of Porto, Portugal
Thiriet Marc, Universite Pierre et Marie Curie (Paris VI), France
Mahmoud El-Sakka, The University of Western Ontario London, Canada
Hidalgo Manuel González, Balearic Islands University, Spain
Gurcan Metin N., Ohio State University, USA
ST6: Unconstrained Biometrics: Advances and Trends

Organizers:
Proença Hugo, University of Beira Interior, Portugal
Du Yingzi, Indiana University-Purdue University Indianapolis, USA
Scharcanski Jacob, Federal University of Rio Grande do Sul Porto Alegre, Brazil
Ross Arun, West Virginia University, USA
Amayeh Gholamreza, EyeCom Corporation, USA

Program Committee:
Júnior Adalberto Schuck, Federal University of Rio Grande do Sul, Brazil
Kwolek Bogdan, Rzeszów University of Technology, Poland
Jung Cláudio R., Federal University of Rio Grande do Sul, Brazil
Alirezaie Javad, Ryerson University, Canada
Konrad Janusz, Boston University, USA
Kevin Jia, International Game Technologies, USA
Meyer Joceli, Federal University of Santa Catarina, Brazil
Alexandre Luís A., University of Beira Interior, Portugal
Soares Luis, ISCTE, Portugal
Coimbra Miguel, University of Porto, Portugal
Fieguth Paul, University of Waterloo, Canada
Xiao Qinghan, Defense Research and Development Canada, Canada
Ives Robert, United States Naval Academy, USA
Tamir Samir, Ingersoll Rand Security, USA

ST7: Behavior Detection and Modeling

Organizers:
Miller Ron, Wright-Patterson Air Force Base, USA
Bebis George, University of Nevada, USA
Rosen Julie, Science Applications International Corporation, USA
Davis Jim, Ohio State University, USA
Lee Simon, Army Research Laboratory, USA
Zandipour Majid, BAE Systems, USA
Sponsors