Contents

SYMPOSIUM OVERVIEW ... 2
MONDAY, DECEMBER 14th ... 3
TUESDAY, DECEMBER 15th ... 5
WEDNESDAY, DECEMBER 16th .. 7
POSTER SESSION ... 9
Keynote Speakers ... 11
Steering Committee/Area Chairs ... 17
International Program Committee ... 18
Special Tracks .. 27
SPONSORS ... 30
Final Program
11th International Symposium on Visual Computing (ISVC’15)
December 14-16, 2015, Las Vegas, Nevada, USA

Symposium Overview

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday 14th</th>
<th>Tuesday 15th</th>
<th>Wednesday 16th</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 am – 9:30 am</td>
<td>Keynote (Ballroom 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40 am – 10:40 am</td>
<td>Parallel Sessions (Ballrooms 2-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:40 am – 11:10 am</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10 am – 12:10 pm</td>
<td>Parallel Sessions (Ballrooms 2-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:10 pm – 1:30 pm</td>
<td>Lunch Break (on your own)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30 pm – 2:30 pm</td>
<td>Keynote (Ballroom 5)</td>
<td>Poster Session * (Ballrooms 3-5)</td>
<td>Keynote (Ballroom 5)</td>
</tr>
<tr>
<td>2:40 pm – 3:40 pm</td>
<td>Parallel Sessions (Ballrooms 2-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:40 pm – 4:10 pm</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:10 pm – 6:00 pm</td>
<td>Parallel Sessions (Ballrooms 2-5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Registration Desk hours: Sunday, Dec 13th: 5pm - 8pm
 Monday, Dec 14th – Wednesday, Dec 16th: 7:30am – 5:30pm
Banquet Dinner: Tuesday, Dec 15th: 7:00pm – 9:30pm (Ballrooms 1-2)

*The poster session runs from 1:30pm to 3:30pm.
Monday, December 14th

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chair/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30-9:30</td>
<td>Keynote: Ravi Ramamoorthi, University of California, San Diego, USA (Ballroom 5)</td>
<td></td>
</tr>
</tbody>
</table>

Parallel Sessions

<table>
<thead>
<tr>
<th>9:40-12:10</th>
<th>ST: Computational Bioimaging I</th>
<th>Computer Graphics I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chair: João Manuel R. S. Tavares (Ballroom 5)</td>
<td>Chair: David Whittinghill (Ballroom 4)</td>
</tr>
<tr>
<td>9:40</td>
<td>Graph-based visualization of neuronal connectivity using matrix block partitioning and edge bundling Tim McGraw</td>
<td>As-Rigid-As-Possible Character Deformation Using Point Handles Zhiping Luo, Remco C. Veltkamp, and Arjan Egges</td>
</tr>
<tr>
<td>10:00</td>
<td>Fuzzy Skeletonization Improves the Performance of Characterizing Trabecular Bone Micro-Architecture Cheng Chen, Dukai Jin, and Punam K. Saha</td>
<td>Image Annotation Incorporating Low-Rankness, Tag and Visual Correlation and Inhomogeneous Errors Yuqing Hou</td>
</tr>
</tbody>
</table>

| 10:40-11:00| Coffee Break |

| 11:10 | Visualization techniques for the developing chicken heart Ly Phan, Cindy Grimm, and Sandra Rugonyi | Time-varying surface reconstruction of an actor's performance L. Blache, M. Desbrun, C. Loscos, and L. Lucas |

<table>
<thead>
<tr>
<th>11:50</th>
<th>Motion and Tracking</th>
<th>Segmentation I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chair: Mircea Nicolescu (Ballroom 3)</td>
<td>Chair: Alireza Tavakkoli (Ballroom 2)</td>
</tr>
<tr>
<td>9:40</td>
<td>Motion priors estimation for robust matching initialization in automotive applications Nolang Fanani, Marc Barnada, and Rudolf Mester</td>
<td>Segmentation of Partially Overlapping Nanoparticles Using Concave Points Sahar Zafari, Tuomas Eerola, Jouni Sampo, Heikki Kalvainen, and Heikki Haario</td>
</tr>
<tr>
<td>10:00</td>
<td>Multi-target Tracking Using Sample-based Data Association for Mixed Images Ting-hao Zhang, Hsiao-Tzu Chen, and Chih-Wei Tang</td>
<td>Temporally Object-based Video Co-Segmentation Michael Ying Yang, Matthias Reso, Jun Tang, Wentong Liao, and Bodo Rosenhahn</td>
</tr>
<tr>
<td>10:20</td>
<td>A Hierarchical Frame-by-Frame Association Method based on Graph Matching for Multi-Object Tracking Sourav Garg, Ehtesham Hassan, Swagat Kumar and Prithwish Guha</td>
<td>An Efficient Non-Parametric Background Modeling Technique with CUDA Heterogeneous Parallel Architecture Brandon Wilson and Alireza Tavakkoli</td>
</tr>
</tbody>
</table>

| 10:40-11:00| Coffee Break |

| 11:10 | Experimental evaluation of rigid registration using phase correlation under illumination changes Alfonso Alba and Edgar Arce-Santana | Finding the N-cuts of Watershed Partitions for Image Segmentation Chao Zhang and Sokratis Makrogiannis |
| 11:50 | HMM based evaluation of physical therapy movements using Kinect tracking Carlos Palma, Augusto Salazar, Francisco Vargas | |

<p>| 12:10-1:30| Lunch (on your own) |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Parallel Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:40-5:10</td>
<td></td>
</tr>
<tr>
<td>2:40</td>
<td>Recognition I
Chair: Andrea Salgian (Ballroom 5)
Estimating the Dominant Orientation of an Object Using Image Segmentation and Principal Component Analysis
Sravan Bhagavatula and Nahlise Sephus</td>
</tr>
<tr>
<td>3:00</td>
<td>Recognition I
Label Propagation for Large Scale 3D Indoor Scenes
Keke Tang, Zhe Zhao, and Xiaoping Chen</td>
</tr>
<tr>
<td>3:20</td>
<td>Recognition I
Symmetry Similarity of Human Perception to Computer Vision Operators
Peter M Forrest and Mark S Nixon</td>
</tr>
<tr>
<td>3:40-4:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>4:10</td>
<td>Parallel Sessions
UT-MARO: Unscented Transformation and Matrix Rank Optimization for Moving Objects Detection in Aerial imagery Tracking
Aygwad ElTantawy, Mohamed S. Shehata</td>
</tr>
<tr>
<td>4:30</td>
<td>Architectural Style Classification of Building Façade Towers
Gayane Shalunts</td>
</tr>
<tr>
<td>2:40-5:10</td>
<td>ST: 3D Mapping, Modeling and Surface Reconstruction
Chair: Fabien Scalzo (Ballroom 3)</td>
</tr>
<tr>
<td>2:40</td>
<td>Recognition I
Generation of 3D/4D photorealistic building models. The testbed area for 4D Cultural Heritage World project: the historical center of Calw (Germany)
José Balsa-Barreiro and Dieter Fritsch</td>
</tr>
<tr>
<td>3:00</td>
<td>Visual Autonomy via 2D Matching in Rendered 3D Models
D. Tenorio, V. Rivera, J. Medina, A. Leondar, M. Gaumer, and Z. Dodds</td>
</tr>
<tr>
<td>3:20</td>
<td>Reconstruction of face texture based on the fusion of texture patches
Jerome Manceau, Renaud Seguier, Catherine Solal</td>
</tr>
<tr>
<td>3:40-4:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>4:30</td>
<td>Dense Correspondence and Optical Flow Estimation Using Gabor, Schmid and Steerable Descriptors
Ahmadreza Baghaie, Roshan M. D'Souza, and Zeyun Yu</td>
</tr>
</tbody>
</table>
Tuesday, December 15th

<table>
<thead>
<tr>
<th>Time</th>
<th>Parallel Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30-9:30</td>
<td>Keynote: Claudio Silva, New York University, USA (Ballroom 5)</td>
</tr>
</tbody>
</table>
| 9:40-12:10 | **Medical Imaging**
Chair: Fabien Scalzo (Ballroom 5) |
| 9:40 | Groupwise Shape Correspondences on 3D Brain Structures Using Probabilistic Latent Variable Models
Hernan F. Garcia, Mauricio A. Alvarez and Alvaro Orozco |
| 9:00 | Automatic Segmentation of Extraocular Muscles Using Superpixel and Normalized Cuts
Qi Xing, Yifan Li, Brendan Wiggins, Joseph L. Demer and Qi Wei |
| 10:00 | More Usable V-EGI for Volumetric Dataset Registration
Chun Dong and Timothy S. Newman |
| 10:20 | Lateral touch detection and localization for interactive, augmented planar surfaces
A. Ntelidakis, X. Zabulis, D. Grammenos and P. Koutlemanis |
| 10:40-11:10 | Coffee Break |
| 11:10 | A Robust Energy Minimization Algorithm for MSLesion Segmentation
Zhaoxuan Gong, Dazhe Zhao , Chunming Li, Wenjun Tan, Christos Davatzikos |
| 11:30 | Impact of the Number of Atlases in A Level Set Formulation of Multi-atlas Segmentation
Yihua Song, Zhaoxuan Gong, Dazhe Zhao, Chaolu Feng, and Chunming Li |
| 11:50 | Probabilistic Labeling of Cerebral Vasculature on MR Angiography
Benjamin Quachtran, Sunil Sheth, Jeffrey L. Saver, David S. Liebeskind,and Fabien Scalzo |
| 9:40-12:10 | **Virtual Reality I**
Chair: Xenophon Zabulis (Ballroom 4) |
| 9:40 | Lateral touch detection and localization for interactive, augmented planar surfaces
A. Ntelidakis, X. Zabulis, D. Grammenos and P. Koutlemanis |
| 10:00 | A Hybrid Real-time Visual Tracking Using Compressive RGB-D Features
Mengyuan Zhao, Heng Luo, Ahmad P.Tati, Yuanchang Lin, and Guotian He |
| 10:20 | High-Quality Consistent Illumination in Mobile Augmented Reality by Radiance Convolution on the GPU
Peter Kan, Johannes Unterguggenberger, and Hannes Kaufmann |
| 10:40-11:10 | Coffee Break |
| 11:10 | Efficient Hand Articulations Tracking using Adaptive Hand Model and Depth map
Byeongkeun Kang, Yeejin Lee, and Truong Q. Nguyen |
| 11:30 | Eye Gaze Correction with a Single Webcam Based on Eye-Replacement
Yalun Qin, Kuo-Chin Lien, Matthew Turk, and Tobias Hollerer |
| 11:50 | Probabilistic Labeling of Cerebral Vasculature on MR Angiography
Benjamin Quachtran, Sunil Sheth, Jeffrey L. Saver, David S. Liebeskind,and Fabien Scalzo |
| 9:40-12:10 | **ST: Observing Humans**
Chair: Kyungnam Kim (Ballroom 3) |
| 9:40 | Gradient Local Auto-Correlations and Extreme Learning Machine for Depth-Based Activity Recognition
Chen Chen, Zhenjie Hou, Baochang Zhang, Junjun Jiang, and Yun Yang |
| 10:00 | A Deep Belief Network for Classifying Remotely-Sensed Hyperspectral Data
Justin H. Le, Ali Pour Yazdanpanah, Emma E. Regentova, and Venkatesan Muthukumar |
| 10:20 | Variational Inference for Background Subtraction in Infrared Imagery
Konstantinos Makantasis, Anastasios Doulamis, and Konstantinos Loupos |
| 10:40-11:10 | Coffee Break |
| 11:10 | Learning Discriminative Spectral Bands for Material Classification
Chao Liu, Sandra Skaff, and Manuel Martinello |
| 11:30 | Variational Inference for Background Subtraction in Infrared Imagery
Konstantinos Makantasis, Anastasios Doulamis, and Konstantinos Loupos |
| 11:50 | Hyperspectral Scene Analysis via Structure From Motion
Corey A. Miller and Thomas J. Wails |
<p>| 12:10-1:30 | Lunch (on your own) |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30-3:30</td>
<td>Poster Session (Ballrooms 2-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30-6:00</td>
<td>Parallel Sessions</td>
<td>ST: Intelligent Transportation Systems</td>
<td>Chair: Brendan Morris (Ballroom 5)</td>
</tr>
<tr>
<td>3:30</td>
<td>Detecting Road Users at Intersections Through Changing Weather Using RGB-Thermal Video</td>
<td>Chris Bahnson and Thomas B. Moeslund</td>
<td></td>
</tr>
<tr>
<td>3:50</td>
<td>Safety Quantification of Intersections Using Computer Vision Techniques</td>
<td>Mohammad Shokrolah Shirazi and Brendan Morris</td>
<td></td>
</tr>
<tr>
<td>3:30-6:00</td>
<td>Visualization II</td>
<td>Chair: Daniela Ushizima (Ballroom 4)</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>Aperio: A System for Visualizing 3D Anatomy Data Using Virtual Mechanical Tools</td>
<td>T. McInerney and D. Tran</td>
<td></td>
</tr>
<tr>
<td>3:50</td>
<td>Quasi-Conformal Hybrid Multi-modality Image Registration and Its Application to Medical Image Fusion</td>
<td>Ka Chun Lam and Lok Ming Lui</td>
<td></td>
</tr>
<tr>
<td>4:10-4:40</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:40</td>
<td>Vehicles Detection in Stereo Vision Based on Disparity Map Segmentation and Objects Classification</td>
<td>Djamila Dekkiche, Bastien Vincke and Alain Mérigot</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>Traffic Light Detection at Night: Comparison of a Learning-based Detector and three Model-based Detectors</td>
<td>Morten B. Jensen, Mark P. Philipson, Chris Bahnson, Andreas Mogelmos, Thomas B. Moeslund, and Mohan M. Trivedi</td>
<td></td>
</tr>
<tr>
<td>5:20</td>
<td>Modelling and Experimental Study for Automated Congestion Driving</td>
<td>Joseph A. Urhahne, Patrick Piastowski, and Mascha C. van der Voort</td>
<td></td>
</tr>
<tr>
<td>5:40</td>
<td>Applications I</td>
<td>Chair: Sokratis Makrogiannis (Ballroom 2)</td>
<td></td>
</tr>
<tr>
<td>3:30-6:00</td>
<td>ST: Visual Perception and Robotic Systems</td>
<td>Chair: Hung La (Ballroom 3)</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>Dynamic Target Tracking and Obstacle Avoidance using a Drone</td>
<td>Alexander C. Woods and Hung M. La</td>
<td>Hybrid Example-based Single Image Super-Resolution</td>
</tr>
<tr>
<td>3:50</td>
<td>An Interactive Node-Link Visualization of Convolutional Neural Networks</td>
<td>Adam W. Harley</td>
<td>Automated habit detection system: A feasibility study</td>
</tr>
<tr>
<td>4:10-4:40</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:40</td>
<td>DPN-LRF: A Local Reference Frame for Robustly Handling Density Differences and Partial Occlusions</td>
<td>Shuichi Akizuki and Manabu Hashimoto</td>
<td>Conductor Tutoring using the Microsoft Kinect</td>
</tr>
<tr>
<td>5:00</td>
<td>3D Perception for Autonomous Robot Exploration</td>
<td>Jiejun Xu, Kyungnam Kim, Lei Zhang, Deepak Khosla</td>
<td>Lens Distortion Rectification Using Triangulation Based Interpolation</td>
</tr>
<tr>
<td>5:20</td>
<td>Group Based Asymmetry - A Fast Saliency Algorithm</td>
<td>Puneet Sharma, and Oddmar Eiksund</td>
<td>A Computer Vision System for Automatic Classification of Most Consumed Brazilian Beans</td>
</tr>
<tr>
<td>5:40</td>
<td>Prototype of super-resolution camera array system</td>
<td>Daiki Hiroa and Hitoshi Iyatomi</td>
<td></td>
</tr>
<tr>
<td>7:00-9:30</td>
<td>Banquet Dinner</td>
<td>Chair: Luc Vincent, Google, USA</td>
<td></td>
</tr>
</tbody>
</table>
Wednesday, December 16th

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chair(s)</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30-9:30</td>
<td>Keynote: Oncel Tuzel, Mitsubishi Electric Research Laboratories, USA (Ballroom 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40-12:10</td>
<td>3D Computer Vision</td>
<td>Computer Graphics II</td>
<td>Parallel Sessions</td>
</tr>
<tr>
<td>9:40</td>
<td>Stereo-Matching in the Context of Vision</td>
<td>Guided High-Quality Rendering</td>
<td>(Ballroom 5)</td>
</tr>
<tr>
<td></td>
<td>Augmented Vehicles</td>
<td>Thorsten Roth, Martin Weier, Jens Maiero, Andre Hinkenjann, and Yongmin Li</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waqar Khan and Reinhard Klette</td>
<td></td>
<td>(Ballroom 4)</td>
</tr>
<tr>
<td>10:00</td>
<td>A Real-Time Depth Estimation Approach for a</td>
<td>User-assisted Inverse Procedural Facade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Focused Plenoptic Camera</td>
<td>Modeling and Compressed Image Rendering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ross Vasko, Niclas Zeller, Franz Quint, and Uwe Stilla</td>
<td>Huiling Zhuo, Shengchuan Zhou, Bedrich Benes, and David Whittinghill</td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>Range Image Processing For Real Time Hospital-</td>
<td>Facial Fattening and Slimming Simulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Room Monitoring</td>
<td>Based on Skull Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alessandro Mecocci, Francesco Micheli, Claudia Zoppetti</td>
<td>Masahiro Fujisaki and Shigeo Morishima</td>
<td></td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>Real–time 3-D Surface Reconstruction from</td>
<td>Many-Lights Real Time Global Illumination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple Cameras</td>
<td>using Sparse Voxel Octree</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yongchun Liu, Huajun Gong, and Zhaoxing Zhang</td>
<td>Che Sun and Emmanuel Agu</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>Stereo Correspondence Evaluation Methods: A</td>
<td>WebPhysics: A High Performance Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systematic Review</td>
<td>Simulation Framework for Web Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Camilo Vargas, Ivan Cabezas, John W. Branch</td>
<td>Robert (Bo) Li, Tasneem Brutch, Guodong Rong, Yi Shen, and Chang Shu</td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40-12:10</td>
<td>Segmentation II</td>
<td>ST: Biometrics</td>
<td></td>
</tr>
<tr>
<td>9:40</td>
<td>A Markov Random Field and Active Contour</td>
<td>Segmentation of Saimaa ringed seals for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Image Segmentation Model for Animal Spots</td>
<td>identification purposes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patterns</td>
<td>Artem Zhelezniakov et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alexander Gomez, German Diez, Jhony Giraldo,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Augusto Salazar, and Juan M. Daza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Segmentation of Building Facade Towers</td>
<td>Fingerprint Matching with Optical Coherence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gayane Shalunts</td>
<td>Tomography</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yaseen Moolla, Ann Singh, Ebrahim Saith, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sharat Akhoury</td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>Effective Information and Contrast based</td>
<td>Improve Non-graph Matching Feature-based</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saliency Detection</td>
<td>Face Recognition Performance by Using a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aditi Kapoor, K.K. Biswas, and M.Hanmandlu</td>
<td>Multi-stage Matching Strategy</td>
<td></td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>Edge Based Segmentation of Left and Right</td>
<td>Neighbors Based Discriminative Feature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ventricles Using Two Distance Regularized</td>
<td>Difference Learning for Kinship Verification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level Sets</td>
<td>Xiaodong Duan and Zheng-Hua Tan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yu Liu, Yue Zhao, Shuxu Guo, Xiaoxiang</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zhang, and Chunming Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>Automatic Crater Detection Using Convex</td>
<td>A Comparative Analysis of Two Approaches to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grouping and Convolutional Neural Networks</td>
<td>Periocular Recognition in Mobile Scenarios</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ebrahim Emami, George Bebis, Ara Nefian, and</td>
<td>Joao C. Monteiro et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terry Fong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:10-1:30</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Applications II</td>
<td>Pattern Classification</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>2:40-4:50</td>
<td>Visual Perception and Analysis as First Steps Toward Human[Robot Chess Playing Andreas Schwenk and Chunrong Yuan</td>
<td>Automatic Verification of Properly Signed Multi-page Document Images Marcal Rusinol, Dimosthenis Karatzas and Josep Llados</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>A Gaussian mixture representation of gesture kinematics for on-line Sign Language video annotation Fabio Martinez, Antoine Manzaner, Michele Gouiffes, and Annelies Bratfort</td>
<td>CRFs and HCRFs based Recognition for Off-line Arabic Handwriting Mottah Elzobi, Ayoub Al-Hamadi, Laslo Dings, and Sherif Ebrahy</td>
<td></td>
</tr>
<tr>
<td>3:40-4:10</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:10</td>
<td>A Study Of Hand Motion/Posture Recognition in Two-Camera Views Jingya Wang and Shahram Payandeh</td>
<td>Ice Detection on Electrical Power Cables Binglin Li, Gabriel Thomas, Dexter Williams</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>Facial Landmark Localization using Robust Relationship Priors and Approximative Gibbs Sampling Karsten Vogt, Oliver Muller and Jorn Ostermann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:50</td>
<td>Recognition II</td>
<td>Virtual Reality II</td>
<td></td>
</tr>
<tr>
<td>2:40-4:50</td>
<td>Off-the-Shelf CNN Features for Fine-Grained Classification of Vessels in a Maritime Environment Fouad Bousetouane and Brendan Morris</td>
<td>Relighting for an Arbitrary Shape Object under Unknown Illumination Environment Yohei Ogura and Hideo Saito</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>Joint Visual Phrase Detection to Boost Scene Parsing Keke Tang, Zhe Zhao, and Xiaoping Chen</td>
<td>Evaluation of Fatigue Measurement using Human Motor Coordination for Gesture-Based Interaction in 3D Environments Neera Pradhan, Angela Benavides, Qin Zhu, and Amy Ulinski Banic</td>
<td></td>
</tr>
<tr>
<td>3:20</td>
<td>If we did not have ImageNet: Comparison of Fisher Encodings and Convolutional Neural Networks on limited training data Christian Hentschel, Timur Pratama Wiradarma, and Harald Sack</td>
<td>JackVR: A Virtual Reality Training System for Landing Oil Rigs Ahmed E. Mostafa, Kazuki Takashima, Mario Costa Sousa, and Ehud Sharlin</td>
<td></td>
</tr>
<tr>
<td>3:40-4:10</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:10</td>
<td>Realtime Face Verification with Lightweight Convolutional Neural Networks Nhan Dam, Duc-Minh Pham, Vinh-Tiep Nguyen, Minh N. Do, Anh-Duc Duong, Minh-Triet Tran</td>
<td>DAcImPro: A novel database of acquired image projections and its application to object recognition Aleksandr Setkov, Fabio Martinez Carillo, Michele Gouiffes, Christian Jacquemin, Maria Vanrell, and Ramon Baldich</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>Deformable Object Behavior Reconstruction Derived through Simultaneous Geometric and Material Property Estimation Shane Transue and Min-Hyung Choi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Poster Session (Ballrooms 2-5)
Tuesday, December 15th (1:30pm-3:30pm)

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidental Fall Detection based on Skeleton Joint Correlation and Activity Boundary</td>
<td>Martha Magali Flores Barranco, Mario-Alberto Ibarra-Mazano, Irene Cheng</td>
</tr>
<tr>
<td>Generalized Wishart processes for interpolation over diffusion tensor fields</td>
<td>Hernan Dario Vargas Cardona, Mauricio A. Alvarez and Alvaro A. Orozco</td>
</tr>
<tr>
<td>Spatio-Temporal Fusion for Learning of Regions of Interests over Multiple Video Streams</td>
<td>Samaneh Khoshrou, Jaime S. Cardoso, Eric Granger, Luis F. Teixeira</td>
</tr>
<tr>
<td>Patch Selection for Single Image Deblurring Based on a Coalitional Game</td>
<td>Jung-Hsuan Lin, Rong-Sheng Wang, Jing-wei Wang</td>
</tr>
<tr>
<td>A Robust Real-Time Road Detection Algorithm Using Color and Edge Information</td>
<td>George Xu and Shahram Payandeh</td>
</tr>
<tr>
<td>SeLibCV: A Service Library for Computer Vision Researchers</td>
<td>Ahmad P. Tafti, Hamid Hassannia, Dee Pizika, and Zeyun Yu</td>
</tr>
<tr>
<td>Bicycle Detection using HOG, HSC and MLBP</td>
<td>Farideh Foroozandeh Shahraki, Ali Pour Yazdanpanah, Emma E. Regentova, and Venkatesan Muthukumar</td>
</tr>
<tr>
<td>On Calibration and Alignment of Point Clouds in a Network of RGB-D Sensors for Tracking</td>
<td>George Xu and Shahram Payandeh</td>
</tr>
<tr>
<td>SemanticWeb Technologies for Object Tracking and Video Analytics</td>
<td>Benoit Gauzere, Claudia Greco, Pierluigi Rittovato, Alessia Saggese and Mario Vento</td>
</tr>
<tr>
<td>Home Oriented Virtual e-Rehabilitation</td>
<td>Yogendra Patil, Iara Brandao, Guilherme Siqueira, and Fei Hu</td>
</tr>
<tr>
<td>WHAT2PRINT: Learning Image Evaluation</td>
<td>Bohao She and Clark F. Olson</td>
</tr>
<tr>
<td>Use of a Large Image Repository to Enhance Domain Dataset for Flyer Classification</td>
<td>Payam Pourashraf and Noriko Tomuro</td>
</tr>
<tr>
<td>Illumination Invariant Robust Likelihood Estimator for Particle Filtering based Target Tracking</td>
<td>Buti Al Delail, Harish Bhaskar, M. Jamal Zemerly, Mohammed Al-Mualla</td>
</tr>
<tr>
<td>Adaptive Flocking Control of Multiple Unmanned Ground Vehicles by Using a UAV</td>
<td>Mohammad Jafari, Shamik Sengupta, and Hung Manh La</td>
</tr>
<tr>
<td>Basic Study of Automated Diagnosis of Viral Plant Diseases using Convolutional Neural Networks</td>
<td>Yusuke Kawasaki, Hiroyuki Uga, Satoshi Kagiwada, and Hitoshi Iyatomi</td>
</tr>
<tr>
<td>Efficient Training of Evolution-COnstructed Features</td>
<td>Meng Zhang, Dah-Jye Lee</td>
</tr>
<tr>
<td>Ground Extraction from Terrestrial LiDAR Scans using 2D-3D Neighborhood Graphs</td>
<td>Yassine Belkhouche, Prakash Duraisamy, and Bill Buckles</td>
</tr>
<tr>
<td>Mass segmentation in Mammograms based on the combination of the Spiking Cortical Model (SCM) and the improved CV Model</td>
<td>Xiaoli Gao, Keju Wang, Yanan Guo, Zhen Yang, Yide Ma</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>High Performance and Efficient Facial Recognition Using Norm of ICA/Multiwavelet Features</td>
<td>Ahmed Aldhahab, George Atia, and Wasfy B. Mikhael</td>
</tr>
<tr>
<td>Dynamic Hand Gesture Recognition Using Generalized Time Warping and Deep Belief Networks</td>
<td>Cristian A. Torres-Valencia, Herman F. Garcia, German A. Holguin, Mauricio A. Alvarez and Alvaro Orozco</td>
</tr>
<tr>
<td>Gaussian processes for slice-based super-resolution MR images</td>
<td>Hernan Darío Vargas Cardona, Andres F. Lopez-Lopera, Alvaro A. Orozco, Mauricio A. Alvarez, Juan Antonio Hernandez Tanames and Norberto Malpica</td>
</tr>
<tr>
<td>Congestion-Aware Warehouse Flow Analysis and Optimization</td>
<td>Sawsan AlHalawani and Niloy J. Mitra</td>
</tr>
<tr>
<td>Building of readable decision trees for automated melanoma discrimination</td>
<td>Keiichi Ohki, M.Emre Celebi, Gerald Schaefer, and Hitoshi Iyatomi</td>
</tr>
<tr>
<td>A Novel Infrastructure for Supporting Display Ecologies</td>
<td>Christian Eichner, Martin Nyoll and Heidrun Schumann</td>
</tr>
<tr>
<td>Visualizing Software Metrics in a Software System Hierarchy</td>
<td>Michael Burch</td>
</tr>
<tr>
<td>Region Growing Selection Technique for Dense Volume Visualization</td>
<td>Lionel B. Sakou, Daniel Wilches, and Amy Banic</td>
</tr>
<tr>
<td>Computing Voronoi Diagrams of Line Segments in R^k in O(n log n) Time</td>
<td>Jeffrey W. Holcomb, Jorge A. Cobb</td>
</tr>
<tr>
<td>Visualizing Aldo Giorgini’s Ideal Flow</td>
<td>Esteban Garcia Bravo and Tim McGraw</td>
</tr>
<tr>
<td>Restoration of Blurred-noisy Images through the concept of Bilevel Programming</td>
<td>Jessica Wong Soo Mee and Chan Chee Seng</td>
</tr>
<tr>
<td>Free-Form Tetrahedron Deformation</td>
<td>Ben Kenwright</td>
</tr>
<tr>
<td>Vision-based Vehicle Counting with High Accuracy for Highways with Perspective View</td>
<td>Mohammad Shokrolah Shirazi and Brendan Morris</td>
</tr>
<tr>
<td>Automatic Motion Classification for Advanced Driver Assistance Systems</td>
<td>Alok Desai, Dah-Jye Lee and Shreeya Mody</td>
</tr>
<tr>
<td>Shared Autonomy Perception and Manipulation of Physical Device Controls</td>
<td>Matthew Rueben and William D. Smart</td>
</tr>
<tr>
<td>Condition Monitoring for Image-Based Visual Servoing Using Kalman Filter</td>
<td>Mien Van, Denglu Wu, Shuzi Sam Ge, Hongliang Ren</td>
</tr>
<tr>
<td>Innovative Virtual Reality application for road safety education of children in urban areas</td>
<td>Taha Ridene, Laure Leroy, and Safwan Chendeb</td>
</tr>
</tbody>
</table>
Sampling and Reconstruction of High-Dimensional Visual Appearance

Ravi Ramamoorthi
University of California, San Diego, USA

Abstract

Many problems in computer graphics and computer vision involve high-dimensional 3D-8D visual datasets. Real-time image synthesis with changing lighting and view is often accomplished by pre-computing the 6D light transport function (2 dimensions each for spatial position, incident lighting and viewing direction). Realistic image synthesis also often involves acquisition of appearance data from real-world objects; a BRDF (Bi-Directional Reflection Distribution Function) that measures the scattering of light at a single surface location is 4D and spatial variation and subsurface scattering involve 6D-8D functions. In computer vision, problems like lighting insensitive facial recognition similarly involve understanding the space of appearance variation across lighting and view. Since hundreds of samples may be required in each dimension, and the total size is exponential in the dimensionality brute force acquisition or pre-computation is often not even feasible. In this talk, we describe a signal-processing approach that exploits the coherence, sparsity and inherent low-dimensionality of the visual data, to derive novel efficient sampling and reconstruction algorithms. We describe a variety of new computational methods and applications, from affine wavelet transforms for real-time rendering with area lights, to space-time and space-angle frequency analysis for motion blur and global illumination, to compressive light transport acquisition. In computer vision, we introduce a new framework of differential photometric reconstruction to tame the complexity of real-world reflectance functions. The results point toward a unified sampling theory applicable to many areas of signal processing, computer graphics and computer vision.

Speaker Bio-Sketch: Ravi Ramamoorthi is a professor of Computer Science and Engineering at the University of California, San Diego, and Director of the UC San Diego Center for Visual Computing. He joined the department in Jul 2014, moving from a tenured faculty appointment at the EECS department in UC Berkeley, where he had been since January 2009. Earlier, he was on the faculty of the Computer Science Department at Columbia University since August 2002, when he received his PhD from Stanford University. He obtained his BS and MS degrees in computer science and physics from the California Institute of Technology in 1998. Prof. Ramamoorthi is an author of more than 100 refereed publications in computer graphics and computer vision, including 50 at ACM SIGGRAPH/TOG, and has played a key role in building multi-faculty research groups that have been recognized as leaders in computer graphics and computer vision at Columbia, Berkeley and UCSD. His research has been recognized with a half-dozen early career awards, including the ACM SIGGRAPH Significant New Researcher Award in computer graphics in 2007, and the Presidential Early Career Award for Scientists and Engineers (PECASE) for his work in physics-based computer vision in 2008. Prof. Ramamoorthi's work has had substantial impact in industry, with techniques like spherical harmonic lighting being adopted in industry-standard RenderMan software, and widely used in interactive applications and movie productions; he has consulted with Pixar and startups in computational imaging. He has graduated more than 20 postdoctoral, Ph.D. and M.S. students, many of whom have taken positions at leading universities or research labs, and he has taught the first open online course in computer graphics as one of the first nine classes on the EdX platform, with more than 80,000 registrations to date and a Chinese translation available via XuetangX; his online videos have been watched more than 300,000 times.
KEYNOTE TALK
Monday, December 14, 2015
1:30 PM – 2:30 PM / Ballroom 5

ISVC 2015: 11th International Symposium on Visual Computing

Making Small Spaces Feel Large: Practical Illusions in Virtual Reality

Evan Suma
University of Southern California

Abstract

Over the past few years, virtual reality has experienced a remarkable resurgence. Fueled by a proliferation of consumer-level head-mounted display and motion tracking devices, an unprecedented quantity of immersive experiences and content has become available for both desktop and mobile VR platforms. However, the problem of locomotion - human movement through a virtual world - remains a significant practical challenge. Many of the VR applications available to date require seated use or limit body movement within a small area, instead relying a gamepad or mouse/keyboard for movement within the virtual environment. Lacking support for natural walking, these virtual locomotion mechanisms do not fully replicate the physical and perceptual cues from the real world and subsequently often fall short in maintaining the illusion that the user has been transported to another location. In this talk, I will introduce a number of perceptual illusions that can overcome the spatial limitations imposed by the real world. This approach, known as redirected walking, has stunning potential to fool the senses. I will present a series of perceptual experiments that have convinced users that they were walking along a straight path while actually traveling in a circle, or that the virtual environment was much larger than it actually was. Additionally, I will discuss algorithmic approaches that leverage these illusory techniques for the dynamic exploration of arbitrary virtual environments, thus enabling the creation of systems that can automatically steer users away from the boundaries of the physical space while walking through a potentially infinite virtual world.

Speaker Bio-Sketch: Evan Suma is the Associate Director of the MxR Lab at the Institute for Creative Technologies and a Research Assistant Professor in the Department of Computer Science at the University of Southern California. He received his Ph.D. in 2010 from the Department of Computer Science at the University of North Carolina at Charlotte. His interests broadly include the research and development of techniques and technologies that enhance immersive virtual environments and 3D human-computer interfaces. He is also particularly interested in leveraging virtual reality for the empirical study of human perception and cognition. Dr. Suma has written or co-authored over 60 academic publications, eight of which have been recognized with conference awards, and is a five-time SIGGRAPH presenter. His gesture interaction middleware toolkit (FAAST) has been widely adopted by the research and hobbyist communities, and his online research videos have been viewed over 2.4 million times. His team received first place at the 2015 SIGGRAPH Immersive Realities AR/VR Contest.
KEYNOTE TALK
Tuesday, December 15, 2015
8:30 AM – 9:30 AM / Ballroom 5

ISVC 2015: 11th International Symposium on Visual Computing

Visualization and Analysis of Urban Data

Cláudio Silva
New York University

Abstract

Today, 50% of the world's population lives in cities and the number will grow to 70% by 2050. Urban data opens up many new opportunities to improve cities and people’s lives. In NYC, by integrating and analyzing data sets from multiple city agencies, the Bloomberg administration was able improve the success rate of inspections. A marked reduction in crime both in New York and Los Angeles has been in part attributed to data-driven policing. Policy changes have also been triggered by data-driven studies that, for example, showed correlations between foreclosures and increase in crime, the effects of subsidized housing on surrounding neighborhoods, and how low income households use the flexibility provided by vouchers to reach neighborhoods with high performing schools. But in each of these successes, the level of effort required to gather, integrate, analyze the relevant data, design and refine models, or develop and deploy apps, is staggering. Further as data volumes and data complexity continue to explode, these problems are only getting worse. In this talk, we will provide an overview of research in the development of new methods and systems for enabling interdisciplinary teams to better understand cities. We will also show some applications of our work.

Speaker Bio-Sketch: Cláudio Silva is a professor of computer science and engineering and data science at New York University. Claudio’s research lies in the intersection of visualization, data analysis, and geometric computing, and recently he has been interested in the analysis of urban data and sports analytics. He has published over 220 journal and conference papers, is an inventor of 12 US patents. His work received over 10,000 citations according to Google Scholar and an h-index of 50. Cláudio has served on the editorial boards of several journals, including IEEE Transactions on Big Data, ACM Transactions on Spatial Algorithms and Systems, Computer Graphics Forum, The Visual Computer, Graphical Models, Computer and Graphics, Computing in Science and Engineering, and IEEE Transactions on Visualization and Computer Graphics. He helped developed a number of award-winning software systems, most recently Major League Baseball (MLB) MLB.com's Statcast player tracking system. He is an IEEE Fellow and was the recipient of the 2014 IEEE VGTC Visualization Technical Achievement Award “in recognition of seminal advances in geometric computing for visualization and for contributions to the development of the VisTrails data exploration system.” He is currently Chair of the IEEE Technical Committee on Visualization and Graphics.
Google Street View: Overview & Computer Vision Challenges

Luc Vincent
Google, USA

Abstract

From its humble beginnings in 2007, Google Street View has grown to become a global product available in over 50 countries, and an indispensable feature of Google Maps. It is the result of a massive engineering effort by a team including software engineers, product managers, optical designers, mechanical engineers, UI designers, computer vision scientists, operations experts, and scores of others. The initial vision for Street View was provided by Google co-founder Larry Page: back in 2002, he personally collected street scene videos from his moving car in order to bootstrap a new research initiative focused on making street level imagery useful. Turning this initial vision into a product required developing major new pieces of technology, including robust data collection platforms (vans, cars, tricycles, snowmobiles, “trekkers”, etc.), systems for computing accurate pose from imperfect sensors, various software components to stitch, blend, color correct and warp collected imagery, a number of systems to address privacy issues, and a lot more. This presentation will give an overview and brief history of the Street View project, and highlight some of the unique computer vision challenges that are keeping the engineering team busy.

Speaker Bio-Sketch: Luc Vincent joined Google in 2004 to work on the Google Books project. While he was ramping up Google's Optical Character Recognition efforts, he got involved in an early stage project whose goal was to capture a large amount of street level imagery and make it universally accessible and useful. Under Luc's leadership, this project became Google Street View and launched officially in May 2007. Luc is now an engineering director in charge of Street View and other map-related imagery projects. Before Google, Luc was Chief Scientist, and then Vice President of Document Imaging at LizardTech, a developer of advanced image compression software. Prior to this, he led an R&D team at the prestigious Xerox Palo Alto Research Center (PARC). He was also Director of Software Development at Scansoft (now Nuance) and held various technical management and individual contributor positions at Xerox Corporation. Luc has over 60 publications in the area of computer vision, image analysis, and document understanding. He has served as an Associate Editor for the IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), and for the Journal of Electronic Imaging. He has also chaired SPIE's conferences on Document Recognition, the International Symposium on Mathematical Morphology (ISMM), and been in the program committee of numerous conferences and workshops. Luc earned his B.S. from Ecole Polytechnique, M.S. in Computer Science from University of Paris XI, and PhD in Mathematical Morphology from the Ecole des Mines de Paris in 1990.
KEYNOTE TALK
Wednesday, December 16, 2015
8:30 AM – 9:30 AM / Ballroom 5

ISVC 2015: 11th International Symposium on Visual Computing

Machine vision for robotic bin-picking: Sensors and algorithms

Oncel Tuzel
Mitsubishi Electric Research Laboratories (MERL)

Abstract

For over four years, at MERL, we have worked on the robot “bin-picking” problem: using a 2D or 3D camera to look into a bin of parts and determine the pose, 3D rotation and translation, of a good candidate to pick up. We have solved the problem several different ways with several different sensors. I will briefly describe the sensors and the algorithms. In the first half of the talk, I will describe the Multi-Flash camera, a 2D camera with 8 flashes, and explain how this inexpensive camera design is used to extract robust geometric features, depth edges and specular edges, from the parts in a cluttered bin. I will present two pose estimation algorithms, (1) Fast directional chamfer matching—a sublinear time line matching algorithm and (2) specular line reconstruction, for fast and robust pose estimation of parts with different surface characteristics. In the second half of the talk, I will present a voting-based pose estimation algorithm applicable to 3D sensors. We represent three-dimensional objects using a set of oriented point pair features: surface points with normals and boundary points with directions. I will describe a max-margin learning framework to identify discriminative features on the surface of the objects. The algorithm selects and ranks features according to their importance for the specified task which leads to improved accuracy and reduced computational cost.

Speaker Bio-Sketch: Oncel Tuzel is a senior principal member of the research staff in Mitsubishi Electric Research Laboratories, Cambridge. He received his BS and the MS degrees in computer engineering from the Middle East Technical University, Ankara, Turkey in 1999 and 2002 respectively, and the Ph.D. from the computer science department at Rutgers University in 2008. Prior to his Ph.D., Oncel worked as a lead software engineer for four years in Ankara, Turkey developing 3D games and simulations. His research interests are broadly in computer vision, machine learning and robotics. His current research topics include deep learning and structured learning for scene labeling and object classification, learning based image enhancement and reinforcement learning. He has co-authored over 40 peer-reviewed publications and holds 25 patents. His work has received the best paper runner-up award in 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), honorable mention award in 2015 Robotics Science and Systems Conference (RSS), and the 2014 R&D 100 award—awarded to 100 most innovative technology introduced in 2013.
KEYNOTE TALK
Wednesday, December 16, 2015
1:30 PM– 2:30 PM / Ballroom 5

ISVC 2015: 11th International Symposium on Visual Computing
Las Vegas, NV, USA

Back to the Drawing Board:
Extracting 3D Drawings from Multiview Imagery

Benjamin B. Kimia
Brown University

Abstract
The three-dimensional reconstruction of scenes from multiple view geometry has made impressive strides in recent years, chiefly by methods correlating isolated feature point and intensities across views. In the general setting, i.e., without requiring controlled acquisition, limiting the number of objects, or requiring patterns on objects, the vast majority of these methods produce unorganized point clouds, meshes, or voxel representations of the reconstructed scene. Many applications, e.g., robotics, urban planning, and industrial design, however, require structured representations, which make explicit 3D curves, 3D surfaces, and their spatial relationships. We present an approach to produce a 3D drawing of a scene, i.e., a set of 3D curve fragments together with their spatial relations captured in the form of a graph, from a large set of multiview data. The 3D drawing is complementary to extracting surface representations which can now be constrained by the 3D drawing acting like a scaffold to hang on the computed representations, leading to increased robustness and quality of reconstruction. The integration of curve geometry is a promising direction for multiview reconstruction.

Speaker Bio-Sketch: Benjamin Kimia is a Professor in the Department of Electrical Sciences and Computer Engineering at Brown University School of Engineering. He is also the associate director of the Laboratory for Engineering Man/Machine Systems (LEMS), an interdisciplinary group focused on signal and image processing, control, multimedia, and computer engineering. Dr. Kimia received the B.Eng. Honors degree from McGill University, Montreal, Canada in 1982, followed by M. Eng. (1986) and Ph.D. (1991) degrees in the areas of Computer Vision and Image Processing. Prof. Kimia's current research interests are focused on mathematical, psychophysical, and computational models for visual processing with applications to assistive devices for the visually impaired, medical imaging, animal behavior analysis, digital archaeology. His research program is based on skeletal representations of shapes and images, multiview reconstructions based on differential geometry, etc.
Steering Committee

Bebis George, University of Nevada, Reno, USA
Boyle Richard, NASA Ames Research Center, USA
Parvin Bahram, Lawrence Berkeley National Laboratory, USA
Koracin Darko, Desert Research Institute, USA

Area Chairs

- **Computer Vision**
 Pavlidis Ioannis, University of Houston, USA
 Feris Rogerio, IBM, USA

- **Computer Graphics**
 McGraw Tim, Purdue University, USA
 Elendt Mark, Side Effects Software Inc., USA

- **Virtual Reality**
 Kopper Regis, Duke University, USA
 Ragan Eric, Texas A\&M University, USA

- **Visualization**
 Ye Zhao, Kent State University, USA
 Weber Gunther, Lawrence Berkeley National Laboratory, USA

Publicity Chair

Erol Ali, Eksperta Software, Turkey

Local Arrangements Chair

Morris Brendan, University of Nevada, Las Vegas, USA

Special Tracks Chair

Wang Junxian, Microsoft, USA
International Program Committee

(Area 1) Computer Vision

Abidi Besma, University of Tennessee at Knoxville, USA
Abou-Nasr Mahmoud, Ford Motor Company, USA
Aboutajdine Driss, National Center for Scientific and Technical Research, Morocco
Aggarwal J. K., University of Texas, Austin, USA
Albu Branzan Alexandra, University of Victoria, Canada
Amayeh Gholamreza, Foveon, USA
Angelopoulou Elli, University of Erlangen-Nuremberg, Germany
Agouris Peggy, George Mason University, USA
Argyros Antonis, University of Crete, Greece
Asari Vijayan, University of Dayton, USA
Athitsos Vassilis, University of Texas at Arlington, USA
Basu Anup, University of Alberta, Canada
Bekris Kostas, Rutgers University, USA
Bhatia Sanjiv, University of Missouri-St. Louis, USA
Bimber Oliver, Johannes Kepler University Linz, Austria
Bourbakis Nikolaos, Wright State University, USA
Brimkov Valentin, State University of New York, USA
Cavallaro Andrea, Queen Mary, University of London, UK
Charalampidis Dimitrios, University of New Orleans, USA
Chellappa Rama, University of Maryland, USA
Chen Yang, HRL Laboratories, USA
Cheng Hui, Sarnoff Corporation, USA
Cheng Shinko, HRL Labs, USA
Cui Jinshi, Peking University, China
Dagher Issam, University of Balamand, Lebanon
Darbon Jerome, CNRS-Ecole Normale Superieure de Cachan, France
Demirdjian David, Vecna Robotics, USA
Diamantos Sotiriou, Ecole Nationale Supérieure de Mécanique et des Microtechniques, France
Duan Ye, University of Missouri-Columbia, USA
Doulamis Anastasios, Technical University of Crete, Greece
Dowdall Jonathan, Google, USA
El-Ansari Mohamed, Ibn Zohr University, Morocco
El-Gammal Ahmed, University of New Jersey, USA
Eng How Lung, Institute for Infocomm Research, Singapore
Erol Ali, ASELSAN, Turkey
Fan Guoliang, Oklahoma State University, USA
Fan Jialue, Northwestern University, USA
Ferri Francesc, Universitat de València, Spain
Fierzli Rony, Intel, USA
Ferryman James, University of Reading, UK
Foresti GianLuca, University of Udine, Italy
Fowlkes Charless, University of California, Irvine, USA
Fukui Kazuhiro, The University of Tsukuba, Japan
Galata Aphrodite, The University of Manchester, UK
Georgescu Bogdan, Siemens, USA
Goh Wooi-Boon, Nanyang Technological University, Singapore
Ghouzali Sanna, King Saud University, Saudi Arabia
Guerra-Filho Gutemberg, Intel, USA
Guevara, Angel Miguel, University of Porto, Portugal
Gustafson David, Kansas State University, USA
Hammoud Riad, BAE Systems, USA
Harville Michael, Hewlett Packard Labs, USA
He Xiangjian, University of Technology, Sydney, Australia
Heikkinen, University of Oulu, Finland
Hongbin Zha, Peking University, China
Hou Zujun, Institute for Infocomm Research, Singapore
Hua Gang, IBM T. J. Watson Research Center, USA
Hua Gang, Stevens Institute, USA
Huang Yongzhen, Chinese Academy of Sciences, China
Imiya Atsushi, Chiba University, Japan
Kamberov George, Stevens Institute of Technology, USA
Kampel Martin, Vienna University of Technology, Austria
Kamberova Gerda, Hofstra University, USA
Kimia Benjamin, Brown University, USA
Kisacanin Branislav, Texas Instruments, USA
Klette Reinhard, Auckland University of Technology, New Zealand
Kokkinos Iasonas, Ecole Centrale de Paris, France
Kollas Stefanos, National Technical University of Athens, Greece
Komodakis Nikos, Ecole Centrale de Paris, France
Kosmopoulos, Dimitrios, Technical Educational Institute of Crete, Greece
Kozintsev, Igor, Intel, USA
Kuno Yoshinori, Saitama University, Japan
Kim Kyungnam, HRL Laboratories, USA
Latecki Lonj Jan, Temple University, USA
Lee D. J., Brigham Young University, USA
Levine Martin, McGill University, Canada
Li Baoxin, Arizona State University, USA
Li Chunming, Vanderbilt University, USA
Li Xiaowei, Google Inc., USA
Lim Ser N, GE Research, USA
Lisin Dima, VidoeeIQ, USA
Lee Hwee Kuan, Bioinformatics Institute, A*STAR, Singapore
Lee Seong-Whan, Korea University, Korea
Li Shuo, GE Healthecare, Canada
Lourakis Manolis, ICS-FORTH, Greece
Loss Leandro, Lawrence Berkeley National Lab, USA
Luo Gang, Harvard University, USA
Ma Yunqian, Honeywell Labs, USA
Maeder Anthony, University of Western Sydney, Australia
Makrogiannis Sokratis, Delaware State University, USA
Maltoni Davide, University of Bologna, Italy
Maroulis Dimitris, National University of Athens, Greece
Maybank Steve, Birkbeck College, UK
Mediani Gerard, University of Southern California, USA
Melenchić Izn Javier, Universitat Oberta de Catalunya, Spain
Metaxas Dimitris, Rutgers University, USA
Ming Wei, Konica Minolta Laboratory, USA
Mirmehdi Majid, Bristol University, UK
Morris Brendan, University of Nevada, Las Vegas, USA
Mueller Klaus, Stony Brook University, USA
Muhammad Ghulam, King Saud University, Saudi Arabia
Mulligan Jeff, NASA Ames Research Center, USA
Murray Don, Point Grey Research, Canada
Nait-Charif Hammadi, Bournemouth University, UK
Nefian Ara, NASA Ames Research Center, USA
Nguyen Quang Vinh, University of Western Sydney, Australia
Nicolescu Mircea, University of Nevada, Reno, USA
Nixon Mark, University of Southampton, UK
Nolle Lars, The Nottingham Trent University, UK
Ntalianis Klimis, National Technical University of Athens, Greece
Or Siu Hang, The Chinese University of Hong Kong, Hong Kong
Papadourakis George, Technological Education Institute, Greece
Papakolopoulos Nikolaos, University of Minnesota, USA
Pati Peeta Basa, CoreLogic, India
Patras Ioannis, Queen Mary University, London, UK
Pavlidis Ioannis, University of Houston, USA
Petrakis Euripides, Technical University of Crete, Greece
Peyronnet Sylvain, LRI, University Paris-Sud, France
Pinhanez Claudio, IBM Research, Brazil
Piccardi Massimo, University of Technology, Australia
Pietikainen Matti, LRDE/University of Oulu, Finland
Pitas Ioannis, Aristotle University of Thessaloniki, Greece
Porikli Fatih, Australian National University, Australia
Prabhakar Salil, DigitalPersona Inc., USA
Prokhorov Danil, Toyota Research Institute, USA
Qian Gang, Arizona State University, USA
Raftopoulos Kostas, National Technical University of Athens, Greece
Regazzoni Carlo, University of Genoa, Italy
Regenova Emma, University of Nevada, Las Vegas, USA
Remagnino Paolo, Kingston University, UK
Ribeiro Eraldo, Florida Institute of Technology, USA
Robles-Kelly Antonio, National ICT Australia (NICTA), Australia
Ross Arun, Michigan State University, USA
Rziza Mohammed, Agdal Mohammed-V University, Morocco
Samal Ashok, University of Nebraska, USA
Samir Tamer, Algerion, USA
Sandberg Kristian, Computational Solutions, USA
Sarti Augusto, DEI Politecnico di Milano, Italy
Savakis Andreas, Rochester Institute of Technology, USA
Schaefer Gerald, Loughborough University, UK
Scalzo Fabien, University of California at Los Angeles, USA
Shah Mubarak, University of Central Florida, USA
Shi Pengcheng, Rochester Institute of Technology, USA
Shimada Nobutaka, Ritsumeikan University, Japan
Singh Rahul, San Francisco State University, USA
Skodras Athanassios, University of Patras, Greece
Skurikhin Alexei, Los Alamos National Laboratory, USA
Souvenir, Richard, University of North Carolina - Charlotte, USA
Su Chung-Yen, National Taiwan Normal University, Taiwan (R.O.C.)
Sugihara Kokichi, University of Tokyo, Japan
Sun Zehang, Apple, USA
Syeda-Mahmood Tanveer, IBM Almaden, USA
Tan Kar Han, Hewlett Packard, USA
Tavakkoli Alireza, University of Houston - Victoria, USA
Tavares, Joao, Universidade do Porto, Portugal
Teoh Eam Khwang, Nanyang Technological University, Singapore
Thiran Jean-Philippe, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
Tistarelli Massimo, University of Sassari, Italy
Tong Yan, University of South Carolina, USA
Tsui T.J., Chinese University of Hong Kong, Hong Kong
Trucco Emanuele, University of Dundee, UK
Tubaro Stefano, DEI, Politecnico di Milano, Italy
Uhl Andreas, Salzburg University, Austria
Veletin Sergio, Kingston University London, UK
Veropoulos Kostantinos, GE Healthcare, Greece
Verri Alessandro, Universita’ di Genova, Italy
Wang Junxian, Microsoft, USA
Wang Song, University of South Carolina, USA
Wang Yunhong, Beihang University, China
Webster Michael, University of Nevada, Reno, USA
Wolff Larry, Equinox Corporation, USA
Wong Kenneth, The University of Hong Kong, Hong Kong
Xiang Tao, Queen Mary, University of London, UK
Xu Meihe, University of California at Los Angeles, USA
Yang Ming-Hsuan, University of California at Merced, USA
Yu Zeyun, University of Wisconsin-Milwaukee, USA
Yuan Chunrong, University of Tuebingen, Germany
Zabulis Xenophon, ICS-FORTH, Greece
Zervakis Michalis, Technical University of Crete, Greece
Zhang Jian, Wake Forest University, USA
Zheng Yuanjie, University of Pennsylvania, USA
Zhang Yan, Delphi Corporation, USA
Ziou Djemel, University of Sherbrooke, Canada
(Area 2) Computer Graphics

Abd Rahni Mt Piah, Universiti Sains Malaysia, Malaysia
Abram Greg, Texas Advanced Computing Center, USA
Adam-Villani Nicoletta, Purdue University, USA
Agu Emmanuel, Worcester Polytechnic Institute, USA
Andres Eric, Laboratory XLIM-SIC, University of Poitiers, France
Artusi Alessandro, GiLab, Universitat de Girona, Spain
Baciu George, Hong Kong PolyU, Hong Kong
Balcisoy Selim Saffet, Sabanci University, Turkey
Barneva Reneta, State University of New York, USA
Belyaev Alexander, Heriot-Watt University, UK
Benes Bedrich, Purdue University, USA
Berberich Eric, Max-Planck Institute, Germany
Bilalis Nicholas, Technical University of Crete, Greece
Bimber Oliver, Johannes Kepler University Linz, Austria
Bouatouch Kadi, University of Rennes I, IRISA, France
Brinkov Valentin, State University of New York, USA
Brown Ross, Queensland University of Technology, Australia
Bruckner Stefan, Vienna University of Technology, Austria
Callahan Steven, University of Utah, USA
Capin Tolga, Bilkent University, Turkey
Chaudhuri Parag, (Indian Institute of Technology Bombay, India
Chen Min, University of Oxford, UK
Cheng Irene, University of Alberta, Canada
Chiang Yi-Jen, New York University, USA
Choi Min-Hyung, University of Colorado at Denver, USA
Comba Joao, Univ. Fed. do Rio Grande do Sul, Brazil
Cremer Jim, University of Iowa, USA
Culbertson Bruce, HP Labs, USA
Dana Kristin, Rutgers University, USA
Debattista Kurt, University of Warwick, UK
Deng Zhigang, University of Houston, USA
Dick Christian, Technical University of Munich, Germany
Dingliana John, Trinity College, Ireland
El-Sana Jihad, Ben Gurion University of The Negev, Israel
Entezari Alireza, University of Florida, USA
Fabian Nathan, Sandia National Laboratories, USA
De Floriani Leila, University of Genova, Italy
Fu Hongbo, City University of Hong Kong, Hong Kong
Fuhrmann Anton, VRVis Research Center, Austria
Gaither Kelly, University of Texas at Austin, USA
Gao Chunyu, Epson Research and Development, USA
Geist Robert, Clemson University, USA
Gelb Dan, Hewlett Packard Labs, USA
Gotz David, University of North Carolina at Chapel Hill, USA
Gooch Amy, University of Victoria, Canada
Gu David, Stony Brook University, USA
Guerra-Filho Gutemberg, Intel, USA
Habib Zulfiqar, COMSATS Institute of Information Technology, Lahore, Pakistan
Hadariver Markus, KAUST, Saudi Arabia
Haller Michael, Upper Austria University of Applied Sciences, Austria
Hamza-Lup Felix, Armstrong Atlantic State University, USA
Han Jung-Hyun, Korea University, Korea
Hand Randall, Lockheed Martin Corporation, USA
Hao Xuejun, Columbia University and NYSPI, USA
Hernandez Jose Tiberio, Universidad de los Andes, Colombia
Hou Tingbo, Google Inc., USA
Huang Jian, University of Tennessee at Knoxville, USA
Huang Mao Lin, University of Technology, Australia
Huang Zhiyong, Institute for Infocomm Research, Singapore
Hussain Muhammad, King Saud University, Saudi Arabia
Yang Ruigang, University of Kentucky, USA
Ye Duan, University of Missouri-Columbia, USA
Yi Beifang, Salem State University, USA
Yin Lijun, Binghamton University, USA
Yoo Terry, National Institutes of Health, USA
Yuan Xiaoru, Peking University, China
Zhang Jian Jun, Bournemouth University, UK

Yang Ruigang, University of Kentucky, USA
Ye Duan, University of Missouri-Columbia, USA
Yi Beifang, Salem State University, USA
Yin Lijun, Binghamton University, USA
Yoo Terry, National Institutes of Health, USA
Yuan Xiaoru, Peking University, China
Zhang Jian Jun, Bournemouth University, UK

Yin Lijun, Binghamton University, USA
Yoo Terry, National Institutes of Health, USA
Yuan Xiaoru, Peking University, China
Zhang Jian Jun, Bournemouth University, UK
Zeng Jianmin, Nanyang Technological University, Singapore
Zara Jiri, Czech Technical University in Prague, Czech
Zeng Wei, Florida Institute of Technology, USA
Zordan Victor, University of California at Riverside, USA

(Area 3) Virtual Reality

Alcaniz Mariano, Technical University of Valencia, Spain
Arns Laura, Purdue University, USA
Bacim Felipe, Virginia Tech, USA
Balcisoy Selim, Sabanci University, Turkey
Behringer Reinhold, Leeds Metropolitan University UK
Benes Bedrich, Purdue University, USA
Bilalis Nicholas, Technical University of Crete, Greece
Billinghurst Mark, HIT Lab, New Zealand
Blach Roland, Fraunhofer Institute for Industrial Engineering, Germany
Blom Kristopher, University of Barcelona, Spain
Bogdanovych Anton, University of Western Sydney, Australia
Brady Rachael, Duke University, USA
Brega Jose Remo Ferreira, Universidade Estadual Paulista, Brazil
Brown Ross, Queensland University of Technology, Australia
Bues Matthias, Fraunhofer IAO in Stuttgart, Germany
Capin Tolga, Bilkent University, Turkey
Chen Jian, Brown University, USA
Cooper Matthew, University of Linkoping, Sweden
Coquillart Sabine, INRIA, France
Craig Alan, NCSA University of Illinois at Urbana-Champaign, USA
Cremer Jim, University of Iowa, USA
Edmunds Timothy, University of British Columbia, Canada
Egges Arjan, Universiteit Utrecht, The Netherlands
Encarnaio L. Miguel, ACT Inc., USA
Figueroa Pablo, Universidad de los Andes, Colombia

Friedman Doron, IDC, Israel
Fuhrmann Anton, VRVis Research Center, Austria
Gregory Michelle, Pacific Northwest National Lab, USA
Gupta Satyandra K., University of Maryland, USA
Haller Michael, FH Hagenberg, Austria
Hamza-Lup Felix, Armstrong Atlantic State University, USA
Herbelin Bruno, EPFL, Switzerland
Hinkenjann Andre, Bonn-Rhein-Sieg University of Applied Sciences, Germany
Hollerer Tobias, University of California at Santa Barbara, USA
Huang Jian, University of Tennessee at Knoxville, USA
Huang Zhiyong, Institute for Infocomm Research (I2R), Singapore

Julier Simon J., University College London, UK
Johnsen Kyle, University of Georgia, USA
Jones Adam, Clemson University, USA
Kiyokawa Kiyoshi, Osaka University, Japan
Klosowski James, AT&T Labs, USA
Kohli Luv, InnerOptic, USA
Kopper Regis, Duke University, USA
Kozintsev, Igor, Samsung, USA
Kuhlen Torsten, RWTH Aachen University, Germany
Laha Bireswar, Stony Brook University, USA
Lee Cha, University of California, Santa Barbara, USA

Liere Robert, van, CWI, The Netherlands
Livingston A. Mark, Naval Research Laboratory, USA
Luo Xun, Qualcomm Research, USA
Malzbender Tom, Hewlett Packard Labs, USA
MacDonald Brendan, National Institute for Occupational Safety and Health, USA
Molineros Jose, Teledyne Scientific and Imaging, USA
Muller Stefan, University of Koblenz, Germany
Owen Charles, Michigan State University, USA
Paelke Volker, University of Ostwestfalen-Lippe, Germany
Peli Eli, Harvard University, USA
Pettifer Steve, The University of Manchester, UK
Pronost Nicolas, Utrecht University, Netherlands
Pugmire Dave, Los Alamos National Lab, USA
Qian Gang, Arizona State University, USA
Raffin Bruno, INRIA, France
Ragan Eric, Oak Ridge National Laboratory, USA
Rodello Ildeberto, University of San Paulo, Brazil
Sandor Christian, Nara Institute of Science and Technology, Japan
Sapidis Nickolas, University of Western Macedonia, Greece
Schulze, Jurgen, University of California - San Diego, USA
Sherman Bill, Indiana University, USA
Singh Gurjot, Virginia Tech, USA
Slavik Pavel, Czech Technical University in Prague, Czech Republic
Sourin Alexei, Nanyang Technological University, Singapore
Steinicke Frank, University of Wurzburg, Germany
Suma Evan, University of Southern California, USA
Stamminger Marc, REVES/INRIA, France
Srikanth Manohar, Indian Institute of Science, India
Wald Ingo, University of Utah, USA
Whitted Turner, TWI Research, UK
Wong Kin-Hong, The Chinese University of Hong Kong, Hong Kong
Yu Ka Chun, Denver Museum of Nature and Science, USA
Yuan Chunrong, University of Tuebingen, Germany
Zachmann Gabriel, Clausthal University, Germany
Zhao Ye, Kent State University, USA

(Area 4) Visualization

Andrienko Gennady, Fraunhofer Institute IAIS, Germany
Avila Lisa, Kitware, USA
Apperley Mark, University of Waikato, New Zealand
Balizs Csibfalvi, Budapest University of Technology and Economics, Hungary
Brady Rachael, Duke University, USA
Benes Bedrich, Purdue University, USA
Bilalis Nicholas, Technical University of Crete, Greece
Bonneau Georges-Pierre, Grenoble Universits, France
Bruckner Stefan, Vienna University of Technology, Austria
Brown Ross, Queensland University of Technology, Australia
Bihler Katja, VRVis Research Center, Austria
Burch Michael, University of Stuttgart, Germany
Callahan Steven, University of Utah, USA
Chen Jian, Brown University, USA
Chen Min, University of Oxford, UK
Chevalier Fanny, INRIA, France
Chiang Yi-Jen, New York University, USA
Cooper Matthew, University of Linkoping, Sweden
Chourasia Amit, University of California - San Diego, USA
Crossno Patricia, Sandia National Laboratories, USA
Daniels Joel, University of Utah, USA
Dick Christian, Technical University of Munich, Germany
Duan Ye, University of Missouri-Columbia, USA
Dwyer Tim, Monash University, Australia
Entezari Alireza, University of Florida, USA
Ertl Thomas, University of Stuttgart, Germany
De Floriani Leila, University of Maryland, USA
Geist Robert, Clemson University, USA
Gotz David, University of North Carolina at Chapel Hill, USA
Grinstein Georges, University of Massachusetts Lowell, USA
Goebel Randy, University of Alberta, Canada
Gregory Michelle, Pacific Northwest National Lab, USA
Hadwiger Helmut Markus, KAUST, Saudi Arabia
Hagen Hans, Technical University of Kaiserslautern, Germany
Hamza-Lup Felix, Armstrong Atlantic State University, USA
Healey Christopher, North Carolina State University at Raleigh, USA
Hochheiser Harry, University of Pittsburgh, USA
Hollerer Tobias, University of California at Santa Barbara, USA
Hong Lichan, University of Sydney; Australia
Hong Seokhee, Palo Alto Research Center, USA
Hotz Ingrid, Zuse Institute Berlin, Germany
Huang Zhiyong, Institute for Infocomm Research (I2R), Singapore
Jiang Ming, Lawrence Livermore National Laboratory, USA
Joshi Alark, Yale University, USA
Julier Simon J., University College London, UK
Koch Steffen, University of Stuttgart, Germany
Laramee Robert, Swansea University, UK
Lewis R. Robert, Washington State University, USA
Liere Robert van, CWI, The Netherlands
Lim Ik Soo, Bangor University, UK
Linsen Lars, Jacobs University, Germany
Liu Zhanping, Kentucky State University, USA
Lohmann Steffen, University of Stuttgart, Germany
Maeder Anthony, University of Western Sydney, Australia
Malpica Jose, Alcala University, Spain
Masutani Yoshitaka, The Hiroshima City University, Japan
Matkovic Kresimir, VRVis Research Center, Austria
McCaffrey James, Microsoft Research / Volt VTE, USA
Melancon Guy, CNRS UMR 5800 LaBRI and INRIA Bordeaux Sud-Ouest, France
Miksch Silvia, Vienna University of Technology, Austria
Monroe Laura, Los Alamos National Labs, USA
Morie Jacki, University of Southern California, USA
Moreland, Kenneth, Sandia National Laboratories, USA
Mudur Sudhir, Concordia university, Canada
Museth Ken, Linkpong University, Sweden
Paelke Volker, University of Ostwestfalen-Lippe, Germany
Papka Michael, Argonne National Laboratory, USA
Peikert Ronald, Swiss Federal Institute of Technology Zurich, Switzerland
Pettifer Steve, The University of Manchester, UK
Pugmire Dave, Los Alamos National Lab, USA
Rabin Robert, University of Wisconsin at Madison, USA
Raffin Bruno, Inria, France
Razdan Anshuman, Arizona State University, USA
Reina Guido, University of Stuttgart, Germany
Rhyne Theresa-Marie, North Carolina State University, USA
Rosenbaum Rene, University of California at Davis, USA
Sadana Samik, Georgia Tech, USA
Sadlo Filip, University of Stuttgart, Germany
Scheuermann Gerik, University of Leipzig, Germany
Shead Timothy, Sandia National Laboratories, USA
Sips Mike, Stanford University, USA
Slavik Pavel, Czech Technical University in Prague, Czech Republic
Sourin XavierAlexei, Nanyang Technological University, Singapore
Thakur Sidharth, Renaissance Computing Institute (RENCI), USA
Theisel Holger, University of Magdeburg, Germany
Thiele Olaf, University of Mannheim, Germany
Tricoche, Purdue University, USA
Umlauf Georg, HTWG Constance, Germany
Viegas Fernanda, IBM, USA
Wald Ingo, University of Utah, USA
Wan Ming, Boeing Phantom Works, USA
Weinkauf Tino, Max-Planck-Institut fuer Informatik, Germany
Weiskopf Daniel, University of Stuttgart, Germany
Wischgoll Thomas, Wright State University, USA
Wongsuphasawat Krist, Twitter Inc, USA
Wylie Brian, Sandia National Laboratory, USA
Wu Yin, Indiana University, USA
Xu Wei, Brookhaven National Lab, USA

Yeasin Mohammed, Memphis University, USA
Yuan Xiaoru, Peking University, China
Zachmann Gabriel, Clausthal University, Germany
Zhang Hui, Indiana University, USA
Zhao Jian, University of Toronto, USA
Zhao Ye, Kent State University, USA
Zheng Ziyi, Stony Brook University, USA
Zhukov Leonid, Caltech, USA

Additional Reviewers

Li Li, Brookhaven National Lab, USA
Carlos Hernandez Matas, ICS, FORTH, Greece
Special Tracks

ST1: Computational Bioimaging

Organizers:
Tavares João Manuel R. S., University of Porto, Portugal
Natal Jorge Renato, University of Porto, Portugal

ST2: 3D Surface Reconstruction, Mapping, and Visualization

Organizers:
Nefian Ara, Carnegie Mellon University/NASA Ames Research Center, USA
Edwards Laurence, NASA Ames Research Center, USA
Huertas Andres, NASA Jet Propulsion Lab, USA

ST3: Observing Humans

Organizers:
Savakis Andreas, Rochester Institute of Technology, USA
Argyros Antonis, University of Crete, Greece
Asari Vijay, University of Dayton, USA

ST4: Advancing Autonomy for Aerial Robotics

Organizers:
Alexis Kostas, University of Nevada, Reno, USA
Chli Margarita, University of Edinburgh, UK
Achtelik Markus, ETH Zurich, Switzerland
Kottas Dimitrios, University of Minnesota, USA
Bebis George, University of Nevada, Reno, USA

ST5: Spectral Imaging Processing and Analysis for Environmental, Engineering and Industrial Applications

Organizers:
Doulamis Anastasios (Tasos), National Technical University of Athens, Greece
Loupos Konstantinos, Institute of Communications and Computer Systems, Greece
ST6: Biometrics
Organizers:
Proença Hugo, University of Beira Interior, Portugal
Ross Arun, Michigan State University, USA

ST7: Intelligent Transportation Systems
Organizers:
Ambardekar, Amol, Microsoft, USA
Morris, Brendan, University of Nevada, Las Vegas, USA

ST8: Visual Perception and Robotic Systems
Organizers:
La Hung, University of Nevada, Reno, USA
Sheng Weihua, Oklahoma State University, USA
Fan Guoliang, Oklahoma State University, USA
Kuno Yoshinori, Saitama University, Japan
Ha Quang, University of Technology Sydney, Australia
Tran Anthony (Tri), Nanyang Technological University, Singapore
Dinh Kien, Rutgers University, USA
NOTES