13th International Symposium on Visual Computing (ISVC’18)
November 19-21, 2018, Las Vegas, Nevada, USA
Contents

MONDAY, NOVEMBER 19th ... 3
TUESDAY, NOVEMBER 20th ... 5
WEDNESDAY, NOVEMBER 21st ... 7
Keynote Speakers ... 9
Steering Committee/Area Chairs .. 15
International Program Committee .. 16
Special Tracks .. 21
SPONSORS .. 22

Registration Desk Hours: Monday – Wednesday 8AM – 4:30PM
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50-9:00</td>
<td>Welcome to ISVC’18 – George Bebis</td>
</tr>
<tr>
<td>9:00-10:00</td>
<td>Keynote: Octavia Camps, Northwestern University, USA (Lotus Ballroom 1)</td>
</tr>
<tr>
<td>10:10-11:50</td>
<td>ST: Computational Bioimaging
Chair: George Bebis (Lotus Ballroom 1)</td>
</tr>
<tr>
<td>10:10</td>
<td>Skin Cancer Segmentation Using a Unified Markov Random Field
Omran Salih and Serestina Viriri</td>
</tr>
<tr>
<td>10:30</td>
<td>Automatic Registration of Serial Cerebral Angiography: A Comparative Review
Alice Tang, Zhiyuan Zhang and Fabien Scalzo</td>
</tr>
<tr>
<td>10:50-11:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:10</td>
<td>Heart Modeling by Convexity Preserving Segmentation and Convex Shape Decomposition
Xue Shi, Lijun Tang, Shaoxiang Zhang and Chunming Li</td>
</tr>
<tr>
<td>11:30</td>
<td>Skull Stripping using Confidence Segmentation Convolution Neural Network
Kaiyuan Chen, Jingyue Shen and Fabien Scalzo</td>
</tr>
<tr>
<td>10:10-11:50</td>
<td>Computer Graphics
Chair: Alireza Tavakkoli (Galleria D)</td>
</tr>
<tr>
<td>10:00</td>
<td>PSO-based Newton-like Method and Iteration Processes in the Generation of Artistic Patterns
Ireneusz Goscinia and Krzysztof Gdawiec</td>
</tr>
<tr>
<td>10:30</td>
<td>Biomimetic Perception Learning for Human Sensorimotor Control
Masaki Nakada, Honglin Chen and Demetri Terzopoulos</td>
</tr>
<tr>
<td>10:50-11:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10:10-11:50</td>
<td>ST: Intelligent Environments: Algorithms and Applications
Chair: Mircea Nicolescu (Galleria E)</td>
</tr>
<tr>
<td>10:10</td>
<td>Accurate and Efficient Non-Parametric Background Detection for Video Surveillance
William Porr, James Easton, Alireza Tavakkoli, Donald Loffredo and Sean Simmons</td>
</tr>
<tr>
<td>10:30</td>
<td>A Low-Power Neuromorphic System for Real-Time Visual Activity Recognition
Deepak Khosla, Ryan Uhlenbrock and Yang Chen</td>
</tr>
<tr>
<td>10:50-11:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:10</td>
<td>Robust Incremental Hidden Conditional Random Fields for Human Action Recognition
Michalis Vrigkas, Ermioni Mastora, Christophoros Nikou and Ioannis Kakadiaris</td>
</tr>
<tr>
<td>11:30</td>
<td>Video-based human action recognition using kernel relevance analysis
Jorge Fernández Ramírez, Andrés Álvarez Meza and Álvaro Orozco Gutiérrez</td>
</tr>
<tr>
<td>11:50-1:30</td>
<td>Lunch (on your own)</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1:30-2:30</td>
<td>Keynote</td>
</tr>
<tr>
<td>2:40-4:40</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2:40</td>
<td></td>
</tr>
<tr>
<td>2:40-4:40</td>
<td>Virtual Reality I</td>
</tr>
<tr>
<td>3:00</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
</tr>
<tr>
<td>3:20-3:40</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>3:40-4:20</td>
<td>Deep Learning I</td>
</tr>
<tr>
<td>2:40</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
</tr>
<tr>
<td>3:20-3:40</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>3:40</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
</tr>
<tr>
<td>6:30-8:30</td>
<td>Welcome Reception</td>
</tr>
</tbody>
</table>
Tuesday (morning), November 20th

Keynote:
Sylvain Paris, Adobe Research, USA (Lotus Ballroom 1)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chair/Location</th>
<th>Session</th>
<th>Chair/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-10:00</td>
<td>Parallel Sessions</td>
<td></td>
<td>Visualization</td>
<td></td>
</tr>
<tr>
<td>10:10-12:10</td>
<td>Motion and Tracking</td>
<td>Chair: Mircea Nicolescu (Lotus Ballroom 1)</td>
<td>Visualization</td>
<td>Chairs: Xi-Kui Miao (Galleria D)</td>
</tr>
<tr>
<td>10:10</td>
<td>Particle Filter Based Tracking and Mapping</td>
<td>Nils Höhner, Anna Katharina Hebborn and Stefan Müller</td>
<td>Visualization of Parameter Sensitivity of 2D Time-Dependent Flow</td>
<td>Karsten Hanser, Ole Klein, Bastian Rieck, Bettina Wiebe, Tobias Selz, Marian Piatkowski, Toni Sagrista, Boyan Zheng, Maria Lukacova, George Craig, Heike Leitte and Filip Sadlo</td>
</tr>
<tr>
<td>10:30</td>
<td>Multi-Branch Siamese Networks with Online Selection for Object Tracking</td>
<td>Zhenxi Li, Guillaume-Alexandre Bilodeau and Wassim Bouachir</td>
<td>Non-stationary generalized Wishart process for enhancing resolution over diffusion tensor fields</td>
<td>Jhon Fredy Cuellar Fierro, Hernán Darío Vargas Cardona, Andrés Marino Álvarez Meza, Álvaro Ángel Orozco Gutiérrez and Mauricio Alexander Álvarez López</td>
</tr>
<tr>
<td>10:50-11:10</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td>The bird gets caught by the WORM: tracking multiple deformable objects in noisy environments using Weight ORdered Logic Maps</td>
<td>Debajyoti Karmaker, Ingo Schiffner, Michael Wilson and Mandyam V. Srinivasan</td>
<td>Analysis and Visualization of Sports Performance Anxiety in Tennis Matches</td>
<td>Shiraj Pokharel and Ying Zhu</td>
</tr>
<tr>
<td>10:10-12:10</td>
<td>Object Detection and Recognition</td>
<td>Chair: Yoshinori Kuno (Galleria E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:10</td>
<td>Detailed sentence generation architecture for image semantics description</td>
<td>Imran Khurram, Muhammad Moazam Fraz and Muhammad Shahzad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Pupil Localization Using Geodesic Distance</td>
<td>Radovan Fusek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:50-11:10</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>Parallel Curves Detection Using Multi-Agent System</td>
<td>Shengzhi Du and Chunling Tu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>Can Deep Learning Learn the Principle of Closed Contour Detection?</td>
<td>Xinhua Zhang, Yijing Watkins and Garrett Kenyon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:10-1:30</td>
<td>Lunch (on your own)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tuesday (afternoon), November 20th

Parallel Sessions

<table>
<thead>
<tr>
<th>Time</th>
<th>Deep Learning II</th>
<th>Applications I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30-3:30</td>
<td>Chair: Robert Laganiere (Lotus Ballroom 1)</td>
<td>Chair: Kristian Sandberg (Galleria D)</td>
</tr>
</tbody>
</table>
| 1:30 | DensSiam: End-to-End Densely-Siamese Network with Self-Attention Model for Object Tracking
Mohamed Abdelpakey, Mohamed Shehata and Mostafa Mohamed | Vision-Depth Landmarks and Inertial Fusion for Navigation in Degraded Visual Environments
Shehryar Khattak, Christos Papachristos and Kostas Alexis |
| 1:50 | Convolutional Adaptive Particle Filter with Multiple Models for Visual Tracking
Reza Jalil Mozdehi, Yevgeniy Reznichenko, Abubakar Siddique and Henry Medeiros | Efficient Nearest Neighbors Search for Large-Scale Landmark Recognition
Federico Magliani, Tomaso Fontanini and Andrea Prati |
| 2:10 | Scale-aware RPN for Vehicle Detection
Lu Ding, Yong Wang, Robert Laganière, Xinbin Luo and Shan Fu | Patient's Body Motion Study using Multimodal RGBDT Videos

Coffee Break

<table>
<thead>
<tr>
<th>Time</th>
<th>Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30-2:50</td>
<td></td>
</tr>
</tbody>
</table>

Parallel Sessions

<table>
<thead>
<tr>
<th>Time</th>
<th>Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30-3:30</td>
<td>Chair: Moujahdi Chouaib (Galleria E)</td>
</tr>
</tbody>
</table>
| 1:30 | Patch-based potentials for interactive contour extraction
Thoraya Ben Chattah, Sébastien Bougleux, Olivier Lézoray and Atef Hamouda |
| 1:50 | A New Algorithm for Local Blur-Scale Computation and Edge Detection
Indranil Guha and Punam Saha |
| 2:10 | Semantic Segmentation by Integrating Classifiers for Different Difficulty Levels
Daisuke Matsuzuki and Kazuhiro Hotta |

Coffee Break

<table>
<thead>
<tr>
<th>Time</th>
<th>Banquet Dinner</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30-2:50</td>
<td></td>
</tr>
</tbody>
</table>

Banquet Dinner

Keynote: [Narendra Ahuja, University of Illinois at Urbana-Champaign, USA](mailto:narendra.ahuja@illinois.edu) (Lotus Ballrooms 2 & 3)
Wednesday (morning), November 21st

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-10:00</td>
<td>Keynote: Zachary Wartell, University of North Carolina at Charlotte, USA (Lotus Ballroom 1)</td>
</tr>
<tr>
<td>9:40-11:50</td>
<td>Parallel Sessions</td>
</tr>
<tr>
<td>10:00</td>
<td>Applications II</td>
</tr>
<tr>
<td></td>
<td>Chair: Punam Saha (Lotus Ballroom 1)</td>
</tr>
<tr>
<td>10:10</td>
<td>Fast Image Dehazing Methods for Real-Time Video Processing Yang Chen and Deepak Khosla</td>
</tr>
<tr>
<td>10:30</td>
<td>GPU Accelerated Non-Parametric Background Subtraction William Porr, James Easton, Alireza Tavakkoli, Donald Loffredo and Sean Simmons</td>
</tr>
<tr>
<td>10:50</td>
<td>Virtual Reality II</td>
</tr>
<tr>
<td></td>
<td>Chairs: Moujahdi Chouaib (Galleria D)</td>
</tr>
<tr>
<td>10:50</td>
<td>Augmented Reality System for Training and Assistance in the Management of Equipment and Industrial Instruments Edison Chicaiza, Edgar De la Cruz and Victor H. Andaluz</td>
</tr>
<tr>
<td>10:50</td>
<td>Alternative Treatment for Spider Phobia through Virtual Reality Environments Victor H. Andaluz and Joseph Armas</td>
</tr>
<tr>
<td>10:50-11:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:10</td>
<td>Budget-constrained Online Video Summarisation of Egocentric Video Using Control Charts Paria Yousefi, Clare Matthews and Ludmila Kuncheva</td>
</tr>
<tr>
<td>11:30</td>
<td>The skyline as a marker for augmented reality in urban context Mehdi Ayadi, Leo Valque, Mihaela Scuturici, Chokri Ben Amar and Serge Miguet</td>
</tr>
<tr>
<td>11:30</td>
<td>p-Laplacian regularization of signals on directed graphs Zeina Abu Aisheh, Sébastien Bougleux and Olivier Lézoray</td>
</tr>
<tr>
<td>11:50</td>
<td>A Dense-Depth Representation for VLAD descriptors in Content-Based Image Retrieval Federico Magliani, Tomaso Fontanini and Andrea Prati</td>
</tr>
<tr>
<td>11:50-1:30</td>
<td>Lunch (on your own)</td>
</tr>
</tbody>
</table>
Wednesday (afternoon), November 21st

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30 - 2:30</td>
<td></td>
<td>Keynote: Renato Pajarola, University of Zurich, Switzerland (Lotus Ballroom 1)</td>
</tr>
<tr>
<td>2:40 - 4:40</td>
<td>ST: Intelligent Transportation Systems</td>
<td>Chair: Brendan Morris (Lotus Ballroom 1)</td>
</tr>
<tr>
<td>2:40</td>
<td>Multiple Object Tracking in Urban Traffic Scenes with a Multiclass Object Detector</td>
<td>Hui-Lee Ooi, Guillaume-Alexandre Bilodeau, Nicolas Saunier and David-Alexandre Beaupre</td>
</tr>
<tr>
<td>3:00</td>
<td>Autonomous Bus Boarding Robotic Wheelchair using Bidirectional Sensing Systems</td>
<td>Shamim Al Mamun, Hisato Fukuda, Antony Lam, Yoshinori Kobayashi and Yoshinori Kuno</td>
</tr>
<tr>
<td>3:20 - 3:40</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>3:40</td>
<td>Traffic Flow Classification Using Traffic Cameras</td>
<td>Mohammad Shokrohal Shirazi and Brendan Morris</td>
</tr>
<tr>
<td>4:00</td>
<td>Road User Abnormal Trajectory Detection using a Deep Autoencoder</td>
<td>Pankaj Roy and Guillaume-Alexandre Bilodeau</td>
</tr>
</tbody>
</table>
KEYNOTE TALK

Monday, November 19, 2018
9:00 am – 10:00 am (Lotus Ballroom 1)

Dynamics-based Invariants for Video Understanding

Octavia I. Camps
Northeastern University

Abstract
The power of geometric invariants to provide solutions to computer vision problems has been recognized for a long time. On the other hand, dynamics-based invariants are often overlooked. Yet, visual data come in streams: videos are temporal sequences of frames, images are ordered sequences of rows of pixels and contours are chained sequences of edges. In this talk, I will discuss the key role that systems theory can play in timely extracting and exploiting dynamics-based invariants to capture actionable information that is very sparsely encoded in high dimensional data streams. The central theme of this approach is the use of dynamical models, and their associated invariants, as an information-encoding paradigm. We will show that embedding problems in the conceptual world of dynamical systems makes available a rich, extremely powerful resource base, leading to robust solutions, or, in cases where the underlying problem is intrinsically hard, to computationally tractable approximations with sub optimality certificates. We will illustrate these ideas in the context of several practical applications: crowd-sourcing video, activity recognition, human re-identification and video prediction.

Speaker Bio-Sketch: Octavía Camps received a B.S. degree in computer science and a B.S. degree in electrical engineering from the Universidad de la Republica (Uruguay), and a M.S. and a Ph.D. degree in electrical engineering from the University of Washington. Since 2006, she is a Professor in the Electrical and Computer Engineering Department at Northeastern University. From 1991 to 2006 she was a faculty of Electrical Engineering and of Computer Science and Engineering at The Pennsylvania State University. Prof. Camps was a visiting researcher at the Computer Science Department at Boston University during Spring 2013 and in 2000, she was a visiting faculty at the California Institute of Technology and at the University of Southern California. She is an associate editor of Computer Vision and Image Understanding (CVIU). Her main research interests include robust computer vision, image processing, and machine learning.
Computer Animation: Past, Present, and Future

Adam Bargteil
University of Maryland, Baltimore County

Abstract

Computer animation has made enormous progress over the last thirty years—from the genesis effect in The Wrath of Khan to the epic battle sequences of Avengers: Infinity War. Today, special effects are almost universally achieved through computer animation and we have the technology to create almost any effect we can imagine. Over the next thirty years we will see a similar transformation, this time in the realm of interactive animation and mixed reality. In this talk, I will chronicle the history of computer animation in research and in practice, take stock of where we are today, and look ahead to an exciting future.

Speaker Bio-Sketch: Adam Bargteil an assistant professor in the Department of Computer Science and Electrical Engineering at the University of Maryland, Baltimore County. His primary research interests are in computer graphics and animations, particularly physics-based animation. He completed his Ph.D. in computer science at the University of California at Berkeley, where I worked in the Berkeley Computer Animation & Modeling group. He then spent two years as a postdoctoral fellow in the City of Bridges working in the Graphics Lab at Carnegie Mellon University. Before returning home to Maryland, he was an assistant professor in the School of Computing at the University of Utah.
KEYNOTE TALK

Tuesday, November 20, 2018
9:00 am – 10:00 am (Lotus Ballroom 1)

Photography Made Easy
Sylvain Paris
Adobe

Abstract

With digital cameras and smartphones, taking a picture has become effortless and easy. Autofocus and autoexposure ensure that all photos are sharp and properly exposed. However, this is not sufficient to get great photos. Most pictures need to be retouched to become aesthetically pleasing. This step still requires a great deal of expertise and a lot of time when done with existing tools. Over the years, I have dedicated a large part of my research to improving this situation. In this talk, I will present a few recent results where we use existing photos by artists as models to make ordinary pictures look better.

Speaker Bio-Sketch: Sylvain Paris is a researcher at Adobe Research in Cambridge Massachusetts. Before that, he was a post-doc at MIT with Frédo Durand and a student at INRIA in Grenoble with François Sillion. His interests cover computational photography and image processing. He has done several contributions to the field of photo and video editing, the goal being to help novices and experts create better pictures and videos. Some of the technology that he has invented is now available in commercial software such as Photoshop and Lightroom.
The Four Decades of Computer Vision

Narendra Ahuja

Beckman Institute, University of Illinois at Urbana-Champaign &
ITRA, Media Lab Asia, Ministry of Electronics and Information Technology

Abstract

We will review selected themes and results that have characterized computer vision research over the past four decades. Emphases have been changing not only with respect to the areas and problems addressed, but also in relatively basic objectives and approaches taken. Starting with the early days of image processing, we will summarize activities involving image analysis, remote and short range images, video analysis, 3D estimation, computer vs human vision, role of image synthesis, perception-action-loop and robotics, active vision, physics based vision, computational photography, object recognition, model vs data driven methods, visual learning, and vision in IoT. This range of major activities reinforces the view that computer vision is an extremely diverse and challenging field. New areas and problems have been emerging faster than they can be solved, which in part explains the dramatic and continuing growth of the field.

Speaker Bio-Sketch: Narendra Ahuja is Research Professor in the Dept. of Electrical and Computer Engineering, Beckman Institute, and Coordinated Science Laboratory, University of Illinois at Urbana-Champaign (http://vision.ai.illinois.edu/ahuja.html) and the Founding Director of Information Technology Research Academy (http://itra.medialabasia.in), Government of India. He received B.E. with honors in electronics engineering from BITS, Pilani, India, M.E. with distinction in electrical communication engineering from IISc, Bangalore, India, and Ph.D. in computer science from University of Maryland, College Park, USA. In 1979, he joined UIUC where he was Donald Biggar Willet Professor of Engineering until 2012. During 1999-2002, he served as the Founding Director of International Institute of Information Technology, Hyderabad (IIITH), first of now about 24 IIITs. He has co-authored three books and over 400 papers in journals and conferences, and received 4 patents. He has supervised research of about 50 PhD, 15 MS and 100 Undergrad students and 10 Postdocs. His algorithms/prototype systems have been used by about a dozen companies/organizations, including industrial systems at General Electric, Westinghouse, Lockheed and Honeywell. He is a fellow of IEEE, American Association for Artificial Intelligence, International Association for Pattern Recognition, Association for Computing Machinery, American Association for the Advancement of Science, and International Society for Optical Engineering. He received the Emanuel R. Piore award of the IEEE, and the Technology Achievement Award of the International Society for Optical Engineering, and TA Stewart-Dyer/Frederick Harvey Trevithick Prize of the Institution of Mechanical Engineers, and was conferred an Honorary Doctorate from York University, England (2018). With his students, he shared Best Paper Awards given by: International Conference on Pattern Recognition (Piero Zamperoni Award), Symposium on Eye Tracking Research and Applications, First IEEE International Workshop on Computer Vision in Sports, International Conference on Pattern Recognition, and IEEE Transaction on Multimedia.
KEYNOTE TALK

Wednesday, November 21, 2018
9:00 am – 10:00 am (Lotus Ballroom 1)

Interaction in Multi-Scale Environments on Virtual Reality Systems

Zachary Wartell
University of North Carolina at Charlotte

Abstract

The terms “scale”, “zoom” and “multi-scale” have subtly but significantly different definitions across zoomable 2D user interfaces (UI) and 3D user interfaces. Further, 3D UIs can execute on Window-Icon-Menu-Pointer desktop systems or execute on systems using a combination of visually coupled display (typically implemented via head-tracking), true 3D display (typically implemented via binocular stereoscopy), and/or 6 degree-of-freedom (6DOF) direct manipulation. (The abbreviation VC-3D-DM distinguishes such systems). For simplicity, define a virtual reality (VR) 3D UI as an UI on a system with one or more of the VC-3D-DM properties and define a non-VR 3D UI as UI on a system lacking all VC-3D-DM properties. Perceptual differences between 2D zoomable UIs, and VR and non-VR 3D UIs complicate transferring concepts and theory as well as porting interaction techniques between these systems. This is particularly important in multi-scale virtual environments, which have geometric details at multiple orders of magnitude in size all of which are relevant to the application. Zoom view maneuvers are fundamental to such environments. I will briefly present preliminary results from two geometric theorems regarding the “perspective equivalence” of the two most common types of zooms in 3D UIs: “scale” zooms and “translation” zooms (called dollying in cinematography). I will briefly discuss how these theoretical results relate to well-known empirical experience that shows that VR 3D UIs for multi-scale environments require treating scale as a separate 7th DOF within the view model. Finally, I will present experimental evaluations of several ways to semi-automate the adjustment of this 7th DOF during travel in multi-scale VEs in two VR display systems.

Speaker Bio-Sketch: Zachary Wartell is an Associate Professor in the Department of Computer Science in the College of Computing and Informatics at the University of North Carolina at Charlotte (UNC Charlotte). He is the Co-Director of The Charlotte Visualization Center. Dr. Wartell received his Ph.D. from the College of Computing at the Georgia Institute of Technology in 2001. He worked for several years at the Human Interface Technology Center at NCR. He joined UNC Charlotte in 2005. Dr. Wartell’s research interests include 3D visualization and 3D graphics and advanced user interfaces including virtual and mixed reality interfaces and multi-touch displays. A common thread through his research has been 2D and 3D geo-spatial interactive visualizations and stereoscopic display systems. His recent collaborative projects have broadened to visual analytics in particular for power distribution systems. Dr. Wartell has served the IEEE VR conferences in various capacities including Local Arrangements co-Chair in 2007 and General co-Chair in 2016. His work has been published in IEEE 3DUI, IEEE VR, ACM SUI and IEEE TVCG. His research has been funded by research grants and contracts from NSF, ARO and DHS and various state agencies.
Tensor Methods in Visual Computing
Renato Pajarola
University of Zürich

Abstract

Tensor decomposition methods and multilinear algebra are emerging tools to cope with current trends in computer graphics, image processing and data visualization, in particular with respect to compact representation and processing of increasingly large-scale, high-dimensional and high-parametric data sets and models. Flexible and scalable mathematical models that can process, manipulate as well as compress, store and retrieve such data efficiently are therefore of increasing importance, especially for higher-dimensional data. Initially proposed as an extension of the concept of matrix rank for 3 and more dimensions, tensor decomposition methods have found applications in a remarkably wide range of disciplines. However, partly due to the notable initial learning costs, this mathematical framework has not reached yet all its potential awareness in the visual computing research community. In this talk I will introduce the most successful tensor decomposition models and review their application in graphics and visualization, as well as give insights into the benefits they offer and showcase specific applications such as visual data compression, signal processing, interactive manipulation, texture synthesis, and data-driven rendering.

Speaker Bio-Sketch: Renato Pajarola is a full Professor in the Department of Informatics at the University of Zürich (UZH). He received a Dipl. Inf.-Ing ETH as well as a Dr. sc. techn. degree in computer science from the Swiss Federal Institute of Technology (ETH) Zurich in 1994 and 1998 respectively. Subsequently he was a post-doctoral researcher and lecturer in the Graphics, Visualization & Usability Center at Georgia Tech. In 1999 he joined the University of California Irvine as an Assistant Professor where he established the Computer Graphics Lab. Since 2005 he has been leading the Visualization and MultiMedia Lab at UZH. He is a Senior Member of ACM and IEEE as well as a Fellow of the Eurographics Association. Dr. Pajarola's research interests include real-time 3D graphics, geometric modeling, point based graphics, interactive large-scale data visualization, remote and parallel rendering, compression and interactive 3D multimedia. He has published a wide range of internationally peer-reviewed research articles in top journals and conferences. Prof. Pajarola regularly serves on program committees, such as for example the IEEE Visualization Conference, Eurographics, EuroVis Conference, IEEE Pacific Visualization or ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. He organized and co-chaired the Eurographics Conference in 2015, chaired the 2010 EG Symposium on Parallel Graphics and Visualization and was papers co-chair in 2011, and also of the 2007 and 2008 IEEE/EG Symposium on Point-Based Computer Graphics. His co-authored papers received a Eurographics Best Paper Award in 2005, an IADIS Best Paper Award in 2007, a SPIE Best Paper Award in 2013, a Best Student Paper at the Pacific Graphics Conference and an Honorable Mention Award at the ACM SIGGRAPH Symposium on Visualization in 2016.
Steering Committee

Bebis George, University of Nevada, Reno, USA
Boyle Richard, NASA Ames Research Center, USA
Parvin Bahram, LBNL & University of Nevada, Reno, USA
Koracin Darko, Desert Research Institute, USA

Area Chairs

- **Computer Vision**
 Ramalingam Srikumar, University of Utah, USA
 Turek Matt, DARPA, USA

- **Computer Graphics**
 Xu Kai, National University of Defense Technology, China
 Lin Steve, Microsoft Asia, China

- **Virtual Reality**
 Ventura Jonathan, University of Colorado at Colorado Springs, USA
 Cuervo Eduardo, Microsoft, USA

- **Visualization**
 Yang Jing, University of North Carolina at Charlotte, USA
 Alsallakh Bilal, Bosch, USA

Publicity Chair

Erol Ali, Eksperta Software, Turkey

Local Arrangements Chair

Morris Brendan, University of Nevada, Las Vegas, USA
Regentova Emma, University of Nevada, Las Vegas, USA

Special Tracks Chair

Gholamreza Amayeh, Arraiy, USA

Awards Chairs

Ambardekar Amol, Microsoft, USA
Tafazzoli Faezeh, Mercedes-Benz Research and Development, USA
International Program Committee

Abou-Nasr Mahmoud Ford Motor Company, USA
Adamo-Villani Nicoletta Purdue University, USA
Agu Emmanuel Worcester Polytechnic Institute, USA
Alsallakh Bilal BOSCH Research
Amayeh Gholamreza Arraiy, USA
Ambarekar Amol Microsoft, USA
Ammi Mehdi LIMSI-CNRS, France
Apperley Mark University of Waikato, Canada
Argyros Antonis Foundation for Research and Technology – Hellas, Greece
Artusi Alessandro University of Cyprus, Cyprus
Asari Vijayan K University of Dayton, USA
Athitsos Vassilis University of Texas at Arlington, USA
Averkiou Melinos University of Cyprus, Cyprus
Baciu George The Hong Kong Polytechnic University, Hong Kong
Balci soy Selim Sabanci University, Turkey
Barneva Reneta SUNY Fredonia, USA
Barzel Ronen Upfront Analytics, USA
Behrisch Michael Harvard University, USA
Belyaev Alexander Heriot-Watt University, UK
Bender Jan RWTH Aachen University, Germany
Benes Bedrich Purdue University, USA
Bhargava Ayush Clemson University, USA
Bhatia Sanjiv University of Missouri — St. Louis, USA
Bhatia Harsh Lawrence Livermore National Laboratory, USA
Biswas Ayan Los Alamos National Laboratory, USA
Boltcheva Dobrina Univeristé de Lorraine – LORIA, France
Borgo Rita King’s College London, UK
Braz Pereira Jose EST Setúbal / IPS, Portugal
Brimkov Valentin Buffalo State College, USA
Bruder Gerd University of Central Florida, USA
Bryan Chris University of California, Davis, USA
Capin Tolga TED University, Turkey
Chai Sek SRI International, USA
Chang Jian Bournemouth University, UK
Chatzis Sotirios Cyprus University of Technology, Cyprus
Chaudhary Aashish Kitware Inc., USA
Chaudhuri Abon WalmartLabs, USA
Chellappa Rama University of Maryland, USA
Chen Zhonggui Xiamen University, China
Chen Jian The Ohio State University, USA
Chen Jie University of Oulu, Finland
Chen Yang HRL Laboratories, USA
Chiang Yi-Jen New York University, USA
Cho Isaac UNC Charlotte, USA
Chou Jia-Kai University of California, Davis, USA
Chourasia Amit University of California, San Diego, USA
Coquillart Sabine INRIA, USA
Czajka Adam Warsaw University of Technology, Poland
Dasgupta Aritra New York University, USA
Dequidt Jeremie INRIA, France
Desai Alok CubiScan, USA
Diamandaras Sotirios University of Nevada, Reno, USA
Diehl Alexandra Universität Konstanz, Germany
Distante Cosimo CNR, Italy
Doerner Ralf RheinMain University of Applied Sciences, Germany
Doretto Gianfranco West Virginia University, USA
Doulamis Anastasios Technical University of Crete, Greece
Duan Ye University of Missouri at Columbia, USA
Ebert Achim University of Kaiserslautern, Germany
Egbert Parris Brigham Young University, USA
El Ansari Mohamed University of Ibn Zohr, Morocco
Encarnacao Luis Miguel Innovation by Design Intl. Consulting, USA
Ens Barrett University of South Australia, Australia
Entezari Alireza University of Florida, USA
Erol Ali Sigun Information Technologies, Turkey
Eslami Mohammad Technical University of Munich, Germany
Ferrara Matteo University of Bologna, Italy
Ferreira Nivan Universidade Federal de Pernambuco, Brazil
Ferrise Francesco Politecnico di Milano, Italy
Ferzli Rony Intel, USA
Fierrez Julian Universidad Autonoma de Madrid, Spain
Ferzli Rony Intel, USA
Frey Steffen Visualisierungsinstitut der Universität Stuttgart, Germany
Fudos Ioannis University of Ioannina, Greece
Fujishiro Issei Keio University, Japan
Galata Aphrodite The University of Manchester, UK
Garth Christoph Technische Universität Kaiserslautern, Germany
Gavrilo M. University of Calgary, Canada
Geist Robert Clemson University, USA
Goebel Randy University of Alberta, Canada
Goh Wooi-Boon Nanyang Technological University, Singapore
Grisoni Laurent University of Lille, France
Grosso Roberto Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Grundhöfer Anselm Bauhaus-University Weimar, Germany
Guevara Lopez Miguel Angel University of Minho, Portugal
Guo Hanqi Argonne National Laboratory, USA
Guo Rongkai Kennesaw State University, USA
Gustafson David Kansas State University, USA
Hammoud Riad Delphi, USA
Hamza-Lup Felix Georgia Southern University, USA
Hao Xuejun Columbia University, USA
Haque Mohammad Ahsanul Aalborg University, Denmark
Hashimoto Atsushi Kyoto University, Japan
Hlawatsch Marcel University of Stuttgart, Germany
Hochheiser Harry University of Pittsburgh, USA
Hodgson Eric Miami University, USA
Hussain Muhammad King Saud University, Saudi Arabia
Iglesias Guitián José A. Universitat Autònoma de Barcelona, Spain
Iimiya Atsushi IMIT Chiba University, Japan
Iwasaki Kei Wakayama University, Japan
Jang Yun Sejong University, South Korea
Jenkin Michael University of York, Canada
Jeschke Stefan NVIDIA, USA
Schulz Hans-Joerg Aarhus University, Denmark
Shead Timothy Sandia National Laboratories, USA
Shehata Mohamed Memorial University, Canada
Sheng Yun East China Normal University, China
Singh Gurjot Fairleigh Dickinson University, USA
Singh Rahul San Francisco State University, USA
Skurikhin Alexei Los Alamos National Laboratory, USA
Slavik Pavel Czech Technical University in Prague, Czech Republic
Smit Noeska University of Bergen, Germany
Sokolov Dmitry INRIA, France
Sreevalsan-Nair Jaya IIIT Bangalore, India
Staheli Diane Massachusetts Institute of Technology, USA
Su Chung-Yen National Taiwan Normal University, Taiwan
Sugimoto Maki Keio University, Japan
Sun Guodao Zhejiang University of Technology, China
Sun Zehang Apple, USA
Syeda-Mahmood Tanveer IBM Almaden Research Center, USA
Séquin Carlo H. University of California, Berkeley, USA
Tafazzoli Faezeh Mercedes-Benz Research and Development, USA
Tavakkoli Alireza, University of Nevada Reno, USA
Teoh Eam Khwang Nanyang Technological University, Singapore
Thalmann Daniel Ecole Polytechnique Fédérale de Lausanne, Switzerland
Theisel Holger Otto-von-Guericke University, Germany
Tong Yan University of South Carolina, USA
Torsney-Weir Thomas University of Vienna, Austria
Tubaro Stefano Politecnico di Milano, Italy
Umlauf Georg HTWG Konstanz, Germany
Valkov Dimitar University of Muenster, Germany
Vaxman Amir Utrecht University, Netherlands
Wang Chaoli University of Notre Dame, USA
Wang Bei University of Utah, USA
Wegner Jan Dirk ETH Zurich, Switzerland
Westenberg Michel Eindhoven University of Technology, Netherlands
Weyers Benjamin RWTH Aachen University, Germany
Wiebel Alexander Worms University of Applied Sciences, Germany
Wischgoll Thomas Wright State University, USA
Wong Kin Hong The Chinese University of Hong Kong, Hong Kong
Wong Tien-Tsin The Chinese University of Hong Kong, Hong Kong
Xu Kai National University of Defense Technology, China
Xu Panpan Bosch, USA
Xu Wei Brookhaven National Lab, USA
Yamamoto Goshiro Kyoto University, Japan
Yan Wei Auckland University of Technology, New Zealand
Yang Xiaosong Bournemouth University, UK
Yang Yueming Mount Holyoke College, USA
Yeasin Mohammed University of Memphis, USA
Yen Hsu-Chun National Taiwan University, Taiwan
Yi Hong Renaissance Computing Institute, USA
Yin Lijun State University of New York at Binghamton, USA
Yu Zeyun University of Wisconsin-Milwaukee, USA
Yuan Xiaoru Peking University, China
Yuan Chunrong TH Koln, Germany
Zabulis Xenophon FORTH, Greece
Special Tracks

ST1: Computational Bioimaging

Organizers:

Tavares João Manuel R. S., University of Porto, Portugal
Natal Jorge Renato, University of Porto, Portugal

ST2: Intelligent Transportation Systems

Organizers:

Ambardekar Amol, Microsoft
Morris Brendan, University of Nevada, Las Vegas
Sponsors